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ABSTRACT

This paper presents a low cost real-time alternative to available com-
mercial human motion capture systems. First, a set of distinguish-
able markers are placed on several human body landmarks and the
scene is captured by a number of calibrated and synchronized cam-
eras. In order to establish a physical relation among markers, a hu-
man body model (HBM) is defined. Markers are detected on all
camera views and delivered as the input of an annealed particle fil-
ter scheme where every particle encodes an instance of the pose of
the HBM to be estimated. Likelihood between particles and input
data is performed through the generalized symmetric epipolar dis-
tance and kinematic constrains are enforced in the propagation step
towards avoiding impossible poses. Tests over the HumanEva anno-
tated dataset yield quantitative results showing the effectiveness of
the proposed algorithm. Results over sequences involving fast and
complex motions are also presented.

Index Terms— Human motion capture, multi-camera analysis,
particle filtering

1. INTRODUCTION

Accurate retrieval of the configuration of an articulated structure
from information provided by multiple cameras is a field that found
numerous applications in the recent years. The grown of computer
graphics technology together with motion capture systems have been
extensively used by the cinema and video games industry to generate
virtual avatars or fantastic characters. Medicine also benefited from
these advances in the field of orthopedics, locomotive pathologies
assessment or sports performance improvement. However, all these
applications require accurate input data to work and, nowadays, only
human motion capture (HMC) systems aided by makers placed on
some body landmarks may produce the desired degree of accuracy.

Optical systems based on photogrammetric methods are more
used than others requiring special suits embedding skeletal-like
structures [1] or magnetic devices [2]. However, optical systems are
usually expensive and require a dedicated hardware involving a high
number of cameras (typically, more than 7) and/or a high frame rate
(typically, 60-120 Hz) to produce an accurate output in form of a
set of the 3D positions corresponding to the markers attached to the
performer’s body. The more usual are retroreflective markers that
reflect back light that is generated near the cameras lens [3].

These systems require to reconstruct the 3D position of markers
from its 2D projections taking into account occlusions and detection
noise. Since errors occur when crucial markers become occluded or
their trajectories are confused, temporal tracking is also employed.
Finally, most applications require the transformation of the mark-
ers localization to the parameters of a HBM. Commercial tools that
perform this transformation are generally semi-automatic, thus in-
volving a labor-intensive and prone to errors task.

In many systems, the estimation of the markers’ 3D position and
the fitting of the HBM are decoupled. One of the first attempts to use
an anatomical human model to enhance marker detection and trajec-
tory tracking was presented in [4]. Another approach based on 3D
marker clustering and topology connectivity analysis to fit a HBM
was presented in [1] and, along the same line, [5] performed an op-
timization process over 3D markers to estimate the pose of the per-
former. Detection of 2D markers in separate images and its analysis
using calibration information has been used in [6] enforcing a HBM
afterwards. A similar technique using a Kalman filter involving the
HBM in the data association step was presented in [7].

In this paper, a low cost real-time multi-camera algorithm for
marker based human motion capture is presented. Marker detec-
tion and HBM pose estimation is performed in the same analysis
loop by means of an annealed particle filter. Epipolar geometry is
exploited in the particle likelihood evaluation by means of the sym-
metric epipolar distance being robust to noisy marker detections and
false measurements. Kinematic restrictions are applied in the par-
ticle propagation step towards avoiding impossible poses. Finally,
effectiveness of the proposed algorithm is assessed by means of ob-
jective metrics defined in the framework of HumanEva dataset [8]
and metrics introduced in [9].

2. HBM BASED ANNEALED PARTICLE FILTERING

Let us define a state space Y ⊂ RD formed by the D defining pa-
rameters of an articulated HBM, in our case, the angles at the joints
and the global translation and rotation of the model w.r.t. the real
world, adding up to D = 27 (see an example in Fig.1). Estimat-
ing the optimal pose of this HBM at time t, bYt, given a set of noisy
observations z1:t up to time t, involves computing a representation
of the posterior likelihood p(Y|z1:t), that usually exhibits a multi-
modal shape. Particle filtering (PF) [10] has been found suitable to
tackle such problems but, due to the high dimensionality of the state
space, the number of particles required to efficiently explore Y turns
out to be computationally unfeasible.

Annealead particle filtering (APF) [11] has been presented in
the context of HMC as a technique to efficiently estimate p(Y|z1:t)
requiring far less particles than PF, hence allowing real-time imple-
mentations. APF introduces a layered posterior estimation where
a set of Np weighted particles

˘
yj

t ∈ Y, wj
t ∈ R

¯Np

j=1
are evaluated

and propagated through a set of NL progressively smoothed versions
of the likelihood function (also called annealing layers) thus avoid-
ing getting trapped in local minima. Finally, once reaching the last
annealing layer, pose bYt is computed as the weighted average of all
particles. An example of the APF operation is depicted in Fig.1.

Following the standard APF algorithm, some factors are to be
taken into account when implementing it: the measurement genera-
tion, the likelihood evaluation and the propagation model.



(a) Input (b) Annealing PF (c) Result

Fig. 1. APF operation example. In (a), the output of the employed marker detector where color boxes stand for correct (green), false (red) and
missed (blue) detections. In (b), the progressive fitting of particles driven by the annealing process and, in (c), the final pose estimation bYt.

2.1. Measurement generation

For a given frame in the video sequence, a set of NC images are
obtained from the NC cameras. Each camera is modeled using a
pinhole camera model based on perspective projection [12]. Accu-
rate calibration information is available. The input data zt to our
tracking system will be the 2D projection of the set of distinguish-
able markers attached to the body of the performer onto these NC

images. Let Dn = {d1,d2, ...,dQn} be the set of Qn locations de-
tected in the image captured in the n-th view, In, 1 < n ≤ NC.
Ideally, this set would contain the 2D projections of the markers that
are not affected by the occlusions produced by the body itself onto
the n-th camera view. In order to generate Dn, a marker detection
algorithm Γ : In → Dn is employed whose performance is assessed
by the triplet: detection rate (DR), the false positive rate (FP ) and
the variance estimation error (σ2

Γ). This generic formulation of Γ
will allow performance comparisons of the tracking algorithm when
using different marker detection algorithms.

Markers are usually placed at the joints, the end of the limbs, the
top of the head and the chest of the subject. In this paper, some ex-
periments were conducted using little yellow balls as body markers
thus a color-based marker detection algorithm was employed to re-
trieve their 2D positions. However, the proposed method is general
enough to be applied to any type of markers detectable onto a set of
2D planes under perspective projection. An example of the markers
measurement delivered to the tracking algorithm is shown in Fig.1a.

2.2. Likelihood evaluation

In order to evaluate the likelihood between the body pose represented
by a given particle state yj

t ∈ Y with reference to the input data
zt = {Dn}NC

n=1, a fitness function w(zt,y
j
t ) should be defined.

The M 3D positions of the HBM landmarks (the joints and the
end of the limbs) corresponding to the pose described by the state
variable y are computed using forward kinematics [6]. Let us de-
note these coordinates as the set X = {x1,x2, ...,xM}, xm ∈ R3.
The fitness function relating the 3D locations set X with the 2D ob-
servations {Dn}NC

n=1 should measure how well these 2D points fit
as projections of the set X . We have tackled a similar problem in
[13] in a Bayesian framework and the underlying idea is applied in
this context. For every element xm from the set X , we compute its
projection onto every camera as

pm,n = Pn(xm), 1 ≤ m ≤ M, 1 ≤ n ≤ NC, (1)

where Pn(·) is the perspective projection operator from 3D to 2D on
the n-th view [12]. Then, the set Tm = {t1, t2, ..., tNC} containing

the closest measurement in every camera view associated to every
HBM landmark xm is constructed as follows:

tn = min
dq

‖pm,n − dq‖ , dq ∈ Dn, ∀n. (2)

However, not all the 3D points xm may have a projection onto every
view due to occlusions or a miss detection of the marker detection
algorithm. In order to detect such cases, a thresholding is applied to
the elements tn dismissing those measurements above a threshold
ρ. In this case, tn = ∅. At this point, it is needed to measure how
likely are the set of 2D measurements Tm to be projections of the 3D
HBM landmark xm. This can be done by means of the generalized
symmetric epipolar distance dSE(·) presented in [13].

Let l
`
xi, j

´
be the epipolar line generated by the point x in

a given view i onto another view j. Symmetric epipolar distance
between two points dSE(x

i,xj), in the two views i,j, is defined as:

dSE(p
i,pj) ,

p
d2(l(xi, j),xj) + d2(l(xj , i),xi), (3)

where d(l(xi, j),xj) is defined as the Euclidean distance between
the epipolar line l

`
xi, j

´
and the point xj as depicted in Fig.2. It

has been shown in [13] that the extension of the symmetric epipolar
distance for k ≥ 2 points (in k different views) dSE(x

1, · · · ,xk)
can be written in terms of the distance defined in Eq.3 as:

dSE(x
1, · · · ,xk) =

vuutk−2X
i=1

k−1X
j=i+1

d2
SE(x

i,xj). (4)

This distance produces low values when the 2D points are coherent,
that is when they are projections from the same 3D location. The
score sm associated to Tm, and therefore to xm, is defined as:

sm(zt,xm) ≡ sm(zt, Tm) ∝ dSE(Tm), (5)

and normalized such that sm(zt, Tm) ≤ 1. In the case where the
non-empty elements of Tm is below 2, the distance dSE(Tm) can not
be computed. Under these circumstances, we set sm(zt, Tm) = 1.

Finally, the cost function C(zt,y
j
t ) is constructed as the average

of the distances over the M HBM 3D landmark points:

C(zt,y
j
t ) =

1

M

MX
m=1

sm(zt,xm). (6)

The associated weighting function is defined as:

w(zt,y) = exp

„
−C(zt,y

j
t )

2

2σ2

«
. (7)

In our experiments, ρ = 10 pixels and σ = 1 provided satisfactory
results being ρ the most discriminative parameter driving the accu-
racy of the algorithm.
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Fig. 2. Symmetric epipolar distance between two points
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2.3. Propagation model

Kinematic restrictions imposed by the angular limits at each joint
may produce a more robust tracking output. Employing a previously
learnt motion model in the particle propagation step can improve
tracking results if annotated data is available [14]. However, these
methods are constrained to deal with motions present in the training
corpus thus being not suitable for unconstrained motion tracking. In
this paper, angular constraints are enforced in the propagation step
of the APF scheme. Usually, the propagation step consists in adding
a random component to the state vector of a particle as:

yk
t = yk

t−1 +N (0, Σ) = N (yk
t−1, Σ), (8)

where N (µ, Σ) stands for a random multivariate Gaussian distribu-
tion of mean µ and covariance matrix Σ. Diagonal elements of co-
variance matrix Σ are set to half of the maximum expected variation
of each variable of the state space over one time step. However, this
propagation may lead to poses out of the joint legal angular ranges.
In this work, we present the following technique: when propagating
particles, angular constraints are taken into account and samples of
a truncated Gaussian distribution, denoted as N ?, are generated in-
stead of a complete Gaussian distribution, as shown in Fig.3. In this
way, particles are always generated within the allowed ranges.

3. EXPERIMENTS AND RESULTS

In order to test the proposed algorithm, two tracking scenarios have
been chosen. The first scenario is the standard HumanEva-I dataset
[8] containing a set of 5 actions performed by 3 different subjects at
a resolution of 640x480 pixels and a frame-rate of 25 fps. Ground
truth data is available and two metrics are defined (mean, µ, and stan-
dard deviation, σ, of the estimation error) towards providing quanti-
tative and comparable results. Moreover, metrics proposed in [9] for
3D human pose tracking evaluation are also employed. Assuming
that landmark positions x̂m associated to particle yj

t have been com-
puted through forward kinematics, we can define a matched marker
estimation x̂m with respect to the ground truth position xm as the
one fulfilling ε = ‖xm − x̂m‖ < δ. This stands for those estima-
tions that fall δ-close to the ground truth position. Then, the Multiple
Marker Tracking Accuracy (MMTA), is defined as the percentage of
markers xm ∈ X fulfilling the ε < δ condition, and the Multiple
Marker Tracking Precision (MMTP), as the average of the metric er-
ror between x̂m and xm, of all pairs fulfilling ε < δ. Finally, these
scores are averaged for all frames in the analysis sequence.

3.1. HumanEva results

A first experiment has been defined towards deciding the optimal
number of layers NL and particles per layer Np. Available ground
truth data allowed generating synthetic input data to our algorithm
with a controlled degree of corruption driven by the triplet DR, FP
and σ2

Γ. Hence, the robustness of the algorithm was evaluated in all
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Fig. 3. Angular constraints enforcement. In (a), particles are prop-
agated using a truncated Gaussian distribution N ? centered at yk

t−1

with covariance matrix Σ bounded between θ− and θ+ (green zone).
In (b), an example of particle propagation in the knee angle display-
ing how propagated particles never fall out the legal ranges (θ < 0).

possible cases. The presented metrics have been computed for all
possible combinations of NL, Np, DR, FP and σ2

Γ in a large sim-
ulation. As a summary, we contemplated the worst case scenario
were we fixed DR ≥ 0.9 and explored the influence of FP and σ2

Γ.
MMTA score has been chosen as the most significant figure to assess
the APF performance as shown in Fig.5. When fixing the variance
error estimation σ2

Γ and increasing the false positive rate FP , it is
observed that it does not affect the overall performance of the algo-
rithm since these false measurements in separate images do not hold
a 3D consistency and, therefore, the generalized symmetric epipolar
distance can reject them. On the other hand, when fixing FP and
increasing σ2

Γ, there is a progressive degradation of the performance
of the tracker. The optimal operation point was set to be NL = 3 and
Np = 700.

HumanEva-I dataset was analyzed using the proposed tracking
system producing the results shown in Table 1. Averaged MMTA and
MMTP scores indicates that in 95% of analyzed frames, difference
between the estimation and the ground truth is below δ = 10 cm
and the commited error in these frames has an average of 45 mm.
When comparing the performance for individual actions, it can be
seen that those involving fast motion (boxing and jogging) exhibit a
lower tracking performance than the others (walking or gesturing).

Marker based APF
µ σ MMTP MMTA

Walking 56.01 14.46 45.81 96.15
Jog 62.51 18.71 47.77 90.12

Throw/Catch 58.31 18.64 47.13 91.72
Gesture 44.70 4.31 42.42 97.46

Box 77.89 30.64 46.12 87.03
Average 59.88 17.35 45.85 95.32

Table 1. Quantitative results for the HumanEva-I dataset when us-
ing a marker detection algorithm with DR = 0.9, FP = 20 and
σ2

Γ = 4 cm. PF parameters were set to NL = 3 and Np = 700.
Distances are measured in millimeters and δ = 100 mm.

3.2. Real scenario results

The presented body tracking algorithm has been applied to capture
motion figures from 4 different types of dances: salsa, belly dancing
and two Turkish folk dances. The analysis sequences were recorded
with 6 calibrated cameras with a resolution of 1132x980 pixels at 30
fps. Markers attached to the body of the dance performer were little
yellow balls and a color-based detection algorithm Γ has been used
to generate the sets Dn for every incoming multi-view frame. The
original images are processed in the YCrCb color space which gives
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Fig. 4. APF tracking examples in a real scenario involving fast motion.
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Fig. 5. MMTA results for several operation conditions fixing DR =
0.9. Vertical and horizontal axes stand for NL and Np, respectively.

flexibility over intensity variations in the frames of a video as well as
among the videos captured from different views. In order to learn the
chrominance information of the marker color, markers on the dancer
are manually labeled in one frame for all camera views. It was as-
sumed that the distributions of Cr and Cb channel intensity values
belonging to marker regions are Gaussian. Thus, the mean can be
computed over each marker region (a pixel neighborhood around the
labeled point). Then, a threshold in the Mahalanobis sense is ap-
plied to all images in order to detect marker locations. An empirical
analysis showed that the detector Γ had the following performance
triplet: DR = 0.98, FP = 4 and σ2

Γ = 2 cm. In this particular
scenario, the algorithm had to cope with very fast motion associated
to some figures. Even though this harsh conditions, the results were
satisfactory and visually accurate as shown in Fig.4.

In this realistic scenario, a distributed computing system was
employed to process the input images and generate theDn sets using
the Γ marker detector. These data was fed to the APF algorithm that,
due to the low complexity of the involved operations, was able to
attain real-time performance (25 fps) in a 3 GHz computer.

4. CONCLUSIONS AND FUTURE WORK

This paper presents a robust real-time low cost approach to marker
based human motion capture using multiple cameras. Progressive
fitting of a HBM through the APF algorithm using a multi-view con-
sistency likelihood function and a kinematically constrained particle
propagation model allowed an accurate estimation of the body pose.
Quantitative evaluation based on HumanEva dataset assessed the ro-
bustness of the algorithm when dealing faulty input data. Fast dance
motion was also analyzed proving the adequateness of our technique
to deal with a real scenario data.

Future work aims at exploiting the scalability of the HBM to-
wards designing fitting algorithms able to cope with occluded body
parts observed when there are occluding elements in the scene. Other
research lines aim at gait and motion disorders analysis.
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evaluation of video-based 3D human pose algorithms,” in Proc.
IEEE Int. Workshop on Tracking Humans for the Evaluation of
their Motion in Image Sequences (submitted), 2009.

[10] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking,” IEEE Trans. on Signal Processing, vol.
50:2, pp. 174–188, 2002.

[11] J. Deutscher and I. Reid, “Articulated body motion capture by
stochastic search,” Int. Journal of Computer Vision, vol. 61:2,
pp. 185–205, 2005.

[12] R.I. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, Cambridge University Press, 2004.

[13] C. Canton-Ferrer, J.R. Casas, and M. Pardàs, “Towards a
Bayesian approach to robust finding correspondences in multi-
ple view geometry environments,” 2005, vol. 3515 of Lecture
Notes on Computer Science, pp. 281–289.

[14] F. Caillette, A. Galata, and T. Howard, “Real-time 3D human
body tracking using variable length Markov models,” in Proc.
British Machine Vision Conference, 2005, vol. 1, pp. 469–478.


