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In building proactive systems for interacting with users by analyzing and recogniz-
ing scenes and settings, an important task is to deal with people’s occupations: Not
only do their locations or identities become important, but their looking direction and
orientation are crucial cues to determine everybody’s intentions and actions. The un-
derstanding of interaction partners or targeted objects is relevant in deciding whether
any unobtrusive system should become aware of possible matters or engaged in con-
versations.

The recognition of looking directions is a subtle task of either tracking people’s
eye gaze or finding an approximation that allows for rather unobtrusive observa-
tions, since capturing pupils requires more or less highly detailed recordings that
can be made possible only with nearby standing cameras that rather limit any user’s
range of movement. Such an approximation can be found in estimating people’s head
orientation.

Whereas eye gaze allows to perceive even the smallest changes of a respective
person’s looking direction, the one estimation of head orientation shows its strength,
especially upon low-resolution textured captures where in-depth analysis of facial
features, as pupils, is not possible at all. When users are allowed to move without
restrictions throughout an entire room, such a loss of detail happens quite often. Fur-
thermore, any rotation of the head, such that only views of the back of the head
or profile captures are available, makes it impossible to gather information about
the user’s eye gaze but still allows one to derive an albeit coarse estimation of the
head’s rotation and, with such, knowledge about the person’s orientation. All these
advantages, however, require techniques that are able to provide good generalization,
especially considering the strong variance of a head’s appearance, depending on the
viewpoint from which the observation is made. Eventually, the dedicated head rep-
resentation not only includes sharp facial features when frontal shots of heads are
available but it also spans small and blurred captures as well as profile views and
ambiguous shots of the back of the head, when persons are allowed to move away
from the camera, which most likely is the case in intelligent environments. Com-
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pared to rather predefined single-user work spaces where a person is expected to sit
in front of his or her display and a camera always delivers near-frontal observations,
unrestricted movement needs to cope not only with a wider range of head rotations,
and with such a stronger variance of head appearances, but also with the surrounding
room’s features such as the maximum distance to the camera, variance in lighting
throughout the room, and occlusions.

Considering these two very different scenarios we encountered during the CHIL
project, we therefore mostly distinguished between the following camera setups and
expected a priori statements:

1. Single-camera settings:
In this sensor setup, only one camera is used to classify mostly near-frontal head
orientations in the range of —90° to +90°. Usually, the person whose head ori-
entation is to be estimated is standing or sitting right in front of that camera, thus
providing face captures with rather high-resolution textures and restricted head
movement.

2. Multicamera settings:
Multicamera environments are to help overcome the limitations of single-camera
settings: Observed people should have the freedom to move without boundaries
— this also includes the observation of their corresponding head rotations; to cope
with captures of the back of people’s heads, several more cameras guarantee to
capture at least one frontal shot and further profile views of the same person.
This scenario not only requires state-of-the-art pose estimators, but also fusion
techniques that merge multiple views or single estimates into one joint hypothe-
sis. Head captures vary strongly in size and facial details appear mostly blurred
(due to the rather high distance to the cameras) or vanish completely, as the head
rotates away from a single camera’s viewpoint.

In the remainder of this chapter, both sensor environments are further explored
and our corresponding work in CHIL is introduced and summarized. Section [5.1]de-
scribes two techniques on the very popular topic of using only a single camera in
front of a person. Section copes with scenarios where more than one camera is
available and concentrates on fusing several single-view hypotheses and joint estima-
tion techniques. We present all approaches with their individual advantages and pro-
vide common evaluation results on INRIA’s Pointing04 Database [6] for single-view
head captures and on the data set of the CLEAR 2007 evaluation [11] for multiview
scenarios.

5.1 Single-Camera Head Pose Estimation

Single-camera head pose estimation mostly copes with people sitting in front of a
camera, showing profile or at least near-frontal face captures all the time. This leads
to rather detailed captures of the user’s head and face, in contrast to scenarios, where
having no restrictions on people’s trajectories leads to huge distances to observing
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cameras, thus providing only small-sized head captures where details in facial res-
olution are often lost or at least blurred. Most appearance-based classifiers have the
ability to perform well under both circumstances since the classification is based on
the whole-image representation only, no matter how detectable nostrils or lip corners
are.

5.1.1 Classification with Neural Networks

A popular appearance-based approach to estimate head orientation in single views
is the use of neural networks [12} 15, [10, [13]]. UKA-ISL adopted this scheme under
CHIL [14], where an overall accuracy of 12.3° and 12.8° could be achieved for pan
and tilt estimation, respectively, on the Pointing04 database. Neural networks follow
their biological counterpart and therefore mostly show their strength in generaliza-
tion: After training the network on example images, this classifier has the ability to
interpolate and generalize for new, unseen head images, thus allowing for almost
continuous pose estimations. The network itself only receives a preprocessed head
image — preprocessing usually involves the enhancement of the image’s contrast to
elaborate facial details — upon which the output is based. This output can either
consist of a horizontal estimation only, or include further output neurons for hypoth-
esizing the vertical orientation, too.

5.1.2 Refining Pose Estimates Using Successive Classifiers

The disadvantage of regular classifiers, even neural networks, for estimating pose is
that they regularly do not allow for balancing between faster but less detailed results
and deeper searches that typically deliver more accurate output. To overcome this
drawback, a classification that consists of several steps, each refining the previous
gathered result, is advisable. Since higher accuracy mostly goes hand in hand with
higher run time, especially coarse estimates need to show a good balance between
their resolution and speed. INRIA presented such a new approach in [5], where both
the holistic appearance of the face as well as local details within it are combined to
receive a refined classification of observed head poses. This new two-step approach
performed with state-of-the-art accuracy as good as 10.1° mean error in pan and
12.6° in tilt estimation for unknown subjects.

After normalizing tracked face regions in size and slant, these normalized cap-
tures are used as a basis for a coarse estimation step by projecting them onto a linear
auto-associative memory (LAAM), learned using the Widrow-Hoff rule. LAAMs are
a specific case of neural networks where each input pattern is associated with each
other. The Widrow-Hoff rule increases a memory’s performance. At each presen-
tation of an image, each cell of the memory modifies its weights from the others
by correcting the difference between the response of the system and the desired re-
sponse. A coarse head orientation estimation can then easily be made possible by
searching for the prototype that best matches a current image. The advantages of us-
ing LAAMs are that they require very few parameters to be built (which allows for
easy saving and reloading) but they also show robustness to partial occlusion. This
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allows for quite fast and easy-to-implement algorithms to gather information about
a coarse pose in advance, whereas a refined classification might follow successively.
Such a successive refinement can be achieved in multiple ways, by applying quite
detailed classifiers to the collected face region. A trend in current research is to use
wavelet families for refined estimations; however, Gaussian receptive fields proved
to be less expensive than the often-used Gabor wavelets but do show interesting prop-
erties such as rotation invariance and scalability. Gaussian receptive fields motivate
the construction of a model graph for each pose: Each node of the graph can be
displaced locally according to its saliency in the image. These model graphs, called
salient grid graphs, do not require a priori knowledges or heuristics about the human
face and can therefore be adapted to pose estimation of other deformable objects.
Whereas LAAMs only deliver a coarse estimate of the observed pose, a successive
search among the coarse pose neighbors results in a final determination of the model
graph that obtains the best match. The pose associated with it can then be selected as
the final head orientation estimate.

5.2 Multicamera Head Pose Estimation

Single-camera head pose estimation has been well evaluated during years of re-
search. Following the trend of focusing upon real-life scenarios and bringing comput-
ers into everyday living environments, that task changed to cope with observations
that do not build on predefined restrictions for the user. The use of only one sensor
to cover an entire room for following and tracking people’s actions would never re-
sult in respective accuracies as achievable as with dedicated restrictions to only be
presented with near-frontal shots of people’s heads. A logical step is thus to equip a
room with multiple cameras so that at least one observation always guarantees near-
frontal views of the tracked person, no matter how he or she moves throughout the
room. This introduces several new problems: Depending on the user’s position in
the room, his or her head size strongly varies over different camera observations:
The nearer one stands to a camera, the bigger the head appears. The further away
a person is moving, the smaller his head appears, whereas facial details vanish into
blurriness or cannot be detected at all. Further issues arise around how to combine
numerous views into one joint, final estimate. This fusion can be achieved by merg-
ing on either the signal level or a higher level. Fusing on the signal level allows for
the overall dimension and processing overhead to be reduced by limiting the clas-
sification problem to one combined feature, whereas higher-level techniques often
allow one to include (available) context information and help choose a smaller sub-
set of advantageous camera views or at least leave the possibility open to extend the
overall system with further sensors without the need to retrain underlying classifiers.
This new task was first defined in the CHIL project and was later evaluated during
the CLEAR 2006 and 2007 evaluations [[14} [15} 1}, 117,16} 2| 13].
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5.2.1 From Single-View Estimates to Joint Hypotheses

An approach that gathers several single-view classifiers into one successive combi-
nation and allows for an accuracy of up to 8.5° and 12.5° for horizontal and vertical
orientation estimation, respectively, on the CLEAR 2007 data set can be found in
UKA-ISL’s publication [[15], where neural networks were applied to every camera
provided in CHIL smart rooms. All in all, hypothesizing over all interesting rotation
directions, a single network was trained to classify camera-relative estimates: Due to
the cameras’ different locations, every view depicts highly different poses that need
to be coped with. Training a classifier to camera-relative orientations, a successive
transformation into the world coordinate system overcomes this discrepancy. That
way, the classifier becomes invariant to location changes or any possible extension.
For their advantage in generalization, neural networks show their strength both in
single-view as well as multiview environments where face size differs strongly, as
long as the training database includes sufficient examples of later observations. This
single classifier can then be applied to every camera provided in the room for gather-
ing as many single-view hypotheses of the same observed head as there are cameras.
The fusion is kept independent from the classification itself: An intuitive approach
is to build the average of all camera estimates into a merged output. Relying on a
single neuron’s output for each view, as suggested in Section [5.1.1] however, results
in including a lot of noise and the overall estimate varies strongly over time. A far
better way is to train the network not to output one continuous estimate, but, in fact,
to describe a likelihood distribution over the defined range of possible head pose ob-
servations (i.e., —180° to +180° for the horizontal rotation). By further letting this
distribution include the classifier’s uncertainty, a successive merging of all views can
be implemented by averaging the likelihood values of all single-view distributions
in a Bayesian filter scheme. As described in [[15], two such filters are used to track
horizontal (pan) and vertical (tilt) head rotation separately. Following Bayes’ rule,
such a filter computes the likelihood of being in a given state, which corresponds to
a certain rotation angle, depending on a previously observed likelihood distribution
(the a priori knowledge) and a current measurement. Whereas the a priori knowl-
edge implies some temporal smoothing by including the previous state distribution
itself, the current measurement is obtained by building the average of all cameras’
estimated likelihoods for every final pose state. The gathered a posteriori distribution
over all states hence presents the joint hypothesis and allows us to classify a final
pose estimate, given the current observations.

5.2.2 Fusing on the Signal Level

Fusion, of course, requires processing power to necessarily run multiple classifiers
instead of only one classifier. It has the advantage of using one joint feature vector
that is computed from all available views. Such a possible signal-level-based fusion
technique can be found in combining spatial and color analysis to exploit redun-
dancy, as shown by UPC in [4]. The technique presented there was also evaluated
on the CLEAR 2007 data set and showed an overall accuracy of 20.48° mean error
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for pan estimation [J3]]. The system itself builds upon the idea of producing synthetic
reconstructions of different head poses and searching through those templates with a
new, currently achieved query vector. Since one of the face’s very distinct features is
the observable amount of skin, a first step in constructing the feature representation
is to gather skin patches. The intuition behind this approach is that the combination
of skin patches over all camera views allows for a reconstruction of skin distribution
over all possible head poses. As described in [7], the probabilistic classification of
pixels to contain skin color can be computed solely on their RGB information, where
a distribution of skin color can be computed by means of offline hand-selected sam-
ples of skin pixels. The classification of all skin pixels in a head region and the
backprojection from camera space into world coordinates then allow an ellipsoid
reconstruction of skin distribution: an approximation of the head’s shape and color
information [see Fig.[5.1(c)]|. For classifying such descriptors by matching with pre-
computed templates, a planar representation provides a saliency map that is easy to
interpret and can be used as a likelihood evaluation function for the 3D ellipsoid’s
voxels and its derived head orientation. Depictions of such interpretations are shown

in Fig.[5.2]

Fig. 5.1. Color and spatial information fusion process scheme. Ellipsoid describing the head
and skin patches are detected on the original images in (a). In (b), skin pixels are back-
projected onto the surface of the ellipsoid. The image in (c) shows the result of information
fusion, obtaining a synthetic reconstruction of the face’s appearance.

5.2.3 Integrated 3D Tracking and Pose Estimation

A common misconception of dedicated head pose estimating systems is the task of
head alignment, that is, detecting an optimal head bounding box upon which the
final estimation can be based by cropping this region of interest and interpreting it as
a dedicated head capture. This detection is assumed to be coped with in external head
tracking and alignment systems, which most often work independently of any further
person tracking. Tightly linked modules might therefore provide both an increase
in speed as well as better generalization, considering misaligned head regions, and
overall an improvement in a tracker’s accuracy due to possible head pose confidence
feedback.
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Fig. 5.2. Planar representation of the head appearance information.

One such integration was presented by FBK-irst in [8] by means of a Bayesian
estimation problem that includes both 2D body position and moving velocity as well
as horizontal and vertical head orientation. In every frame step, a hypothesized body
position can be updated along with its corresponding velocity component accord-
ing to the time elapsed between these two frames. To account for uncertainty and
ambiguity, a particle filter allows one to propagate numerous hypotheses.
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3D space o age""ane

Fig. 5.3. 3D shape model parameterized by floor position (x,y), body orientation ¥, and head
pose (a, B) (pan and tilt angle), and an approximate, but efficient, rendering implementation
that still conveys imaging artifacts such as perspective distortion and scaling. Note the offset
of the head patch from the central axis; it gives a strong cue for head pose estimation. Involved
in the rendering are the angular offsets @ and y of the body parts to the camera’s optical axis
n.
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Low-dimensional shape and appearance models identifying image patches where
the head and torso are expected to appear in each camera frame then help in com-
puting each hypothesis’ likelihood. One such adopted model is depicted in Fig.[5.3}
Each hypothesis is used to construct a synthesized 3D appearance of the tracked
body by assembling a set of rigid cone trunks. These trunks are positioned, scaled,
and oriented according to floor location, target height, and body part orientations —
a triple of 3D points, representing the centers of hips, shoulders, and top of head —
that is computed from the hypothesized vector. This allows for an efficient and fast
evaluation of every hypothesis. These vertices are backprojected onto every camera
frame for gathering 2D segments, within which color histograms are to describe the
appearance of the individual body parts. By previously collecting corresponding his-
tograms of all body parts (which can be easily obtained upon a person’s entrance into
a room), potential head and upper torso patches can easily be identified within the
image by comparing the corresponding histograms to their respective general coun-
terparts. Interpolating between these templates allows for synthesizing new poses
and views (Fig.[5.4). Finally, by multiplying all single-view scores, a joint multiview
value can be obtained that allows one to classify for the best pose and location. Eval-
uated on the CLEAR 2007 data set, an overall mean error of 29.52° horizontally and
16.32° could thus be obtained [9].

(o) = > wu(o) - he
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Fig. 5.4. Histogram synthesis. The cube faces represent preacquired top, front, and side views
of the object as seen from a new viewpoint. A weight is assigned to each view according to its
amount of visible area. A new object appearance is then generated as a weighted interpolation
of these histograms.

5.3 Conclusion and Future Work

This chapter has presented an overview of CHIL’s perceptive task to recognize peo-
ple’s head orientation under both monocular and multiview scenarios. Head pose
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estimation in single-view environments has already been the subject of numerous re-
search projects. CHIL’s main contribution in this field focused on extending that task
toward using multiple cameras and allowing tracked persons to move and work with-
out any limitations that eventually remained from a single camera’s setup. During
CLEAR evaluations, all developed systems were compared on publicly made data
sets for both conditional tasks, which attracted a lot of interest for further, external
participants. The results, achieving mean error rates as low as 10.1° for pan and 12.6°
for tilt in single-view and 8.5° and 12.5°, respectively, for multiview environments,
demonstrated our research to be competitive and state-of-the-art. Nevertheless, re-
maining issues such as lighting conditions, the diversity of different hair-styles when
capturing people from their back, or evaluating processing speed against a possible
enhancement of accuracy by increasing the number of camera views yet remain to be
coped with for further robustness and increased usability. Head pose not only allows
for an indication about a person’s orientation, but rather makes it possible to approx-
imate that person’s eye gaze and looking direction to successively infer a target on
which he or she is focusing. Our ongoing and future research in this field will thus
analyze the (visual) focus of people’s attention, based on head orientation, in order to
continue with the unobtrusive setup of sensors and perception (see also Chapter [9).
The joint combination of further modalities to estimate the visual focus of attention
will also be the subject of future research and evaluation.
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