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Image Processing Group, Technical University of Catalonia (Spain)

ABSTRACT

This paper presents a view-independent approach to markerless hu-
man motion capture in low resolution sequences from multiple cal-
ibrated and synchronized cameras. Redundancy among cameras is
exploited to generate a 3D voxelized representation of the scene and
a human body model (HBM) is introduced towards analyzing these
data. An annealed particle filtering scheme where every particle
encodes an instance of the pose of the HBM is employed. Likeli-
hood between particles and input data is performed using occupancy
and surface information and kinematic constrains are imposed in the
propagation step towards avoiding impossible poses. Test over the
HumanEva annotated dataset yield quantitative results showing the
effectiveness of the proposed algorithm.

Index Terms— Human motion capture, multi-camera analysis,
particle filtering, voxel processing

1. INTRODUCTION

Automatic human motion capture (HMC) has been studied exten-
sively [1] basically fostered by the number of potential applications
and its inherent complexity. This research area contains a number of
hard and often ill-posed problems such as inferring the pose and mo-
tion of a highly articulated and self-occluding 3D object from a set
of images. Applications that benefit from the obtained information
are, for instance, human computer interfaces [2], unusual behavior
detection in security applications [3] or tele-conferencing [4].

Recovering the pose of a human body model (HBM) involves
estimating highly dimensional and multimodal statistic distributions
associated to the defining parameters of this HBM. In this field, some
contributions employed linear techniques such as Kalman filtering
[5] although being prone to loose track. However, due to the mul-
timodal shape of the involved distributions, techniques based on the
particle filtering algorithm (PF) proved to be efficient to tackle this
problem as done in [6]. Finally, state-of-the-art annealed particle
filtering (APF) introduced by [7] in the field of HMC noticeably im-
proved the performance and robustness of the obtained results. In
some cases, annotated data allowed analyzing specific actions [6]
yielding to a more efficient exploration of these distributions when
tracking motion patterns present in the training corpus.

Processing multiple images separately exploiting calibration in-
formation have been a common research direction [7] but it turned
out to be very sensitive to perspective and occlusion issues and clut-
tered backgrounds thus requiring setup scenarios. As a solution, data
fusion towards generating a 3D representation of the scene unifying
information from several camera views allowed fitting a HBM using
binary [5] and colored [6] voxels. Efficient implementations of the
shape from silhouette algorithms required to generate the voxel re-
construction proved this 3D representation appropriate towards real-
time applications [8].

In this paper, a multi-camera algorithm for markerless human
motion tracking is presented using an extension of the APF with
2D image measurements to 3D using a dynamic binary voxel recon-
struction. In this way, the presented algorithm gets rid of perspec-
tive and clutter issues while exploiting the APF properties through a
particle likelihood evaluation based on volume overlap and surface
distances. Kinematic restrictions applied in the particle propagation
step allows avoiding impossible poses. Finally, effectiveness of the
proposed algorithm is assessed by means of objective metrics.

2. HBM BASED ANNEALED PARTICLE FILTERING

Let us define a state space X ⊂ RD formed by the D defining pa-
rameters of an articulated HBM, in our case, the angles at the joints
and the global translation and rotation of the model with respect to
the real world, adding up to D = 27 (see an example in Fig.1). Es-
timating the optimal pose of this HBM at time t, bXt, given a set of
noisy observations z1:t up to time t, involves computing a represen-
tation of the posterior likelihood p(X|z1:t), that usually exhibits a
multimodal shape. Particle filtering [9] has been found suitable to
tackle such problems but, due to the high dimensionality of the state
space, the number of particles required to efficiently explore X turns
out to be computationally unfeasible.

Annealed particle filtering [7] was presented in the context of
HMC as a technique to efficiently estimate p(X|z1:t) requiring far
less particles than PF, hence allowing affordable implementations.
APF introduces a layered posterior estimation where a set of Np

weighted particles
˘
yj

t ∈ X , wj
t ∈ R

¯Np

j=1
are evaluated and prop-

agated through a set of NL progressively smoothed versions of the
likelihood function (also called annealing layers) thus avoiding get-
ting trapped in local maxima. Finally, once reaching the last an-
nealing layer, pose bXt is computed as the weighted average of all
particles. An example of the APF operation is depicted in Fig.1.

Following the standard APF algorithm, some factors are to be
taken into account when implementing it: the measurement genera-
tion, the likelihood evaluation and the propagation model.

2.1. Measurement generation

For a given frame in the video sequence, a set of NC images are
obtained from the NC cameras. Each camera is modeled using a
pinhole camera model based on perspective projection with cam-
era calibration information available. Foreground regions from in-
put images are obtained using a standard background learning and
substraction technique [10] and these data is used to generate a 3D
voxel reconstruction of the scene using a shape-from-silhouette pro-
cess [8] (see an example in Fig.1a). Let us denote this set as VR and
its associated surface voxels as VS.
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Fig. 1. APF operation example. In (a), the input image and the voxel reconstruction projection. In (b), the progressive fitting of particles
driven by the annealing process and, in (c), the final pose estimation bXt.

2.2. Likelihood Evaluation

Likelihood measure is computed for each particle estimating how
well the encoded body pose fits with the input data zt. We extend
the commonly used silhouette overlap and edge distance measures
employed in 2D measurements [7] to 3D as volume intersection and
surface distance measures.

Let us define a HBM as the set H formed by a root part (torso)
denoted as T and a set of NL open kinematic chains modeling the
head, arms and legs. Each limb will be formed by a variable number
of parts (links in this kinematic chain) denoted as P . Hence,

H = {T ,Pi,j , Ji,j}, 1 ≤ i ≤ NL, 1 ≤ j ≤ NP(i), (1)

where NP(i) stands for the number of parts in the i-th limb. The
torso, limbs and their sub-parts are connected to one another by
means of joints, Ji,j . In order to constrain the possible poses that
this HBM may adopt to be valid, we define a number of degrees of
freedom (DoF) and a legal angular range at each joint.

The proposed model has its root position in the pelvis and adds
up to 21 DoF distributed as follows: 3 DoF at each shoulder, 1 DoF
at the elbows, 3 DoF at the hips, 1 DoF at the knees and 3 DoF at
the waist. Apart of these DoF, we must consider the translation and
rotation of the root with respect to the world, resulting in the 27 DoF
associated to H (see Fig.2a).

Volume based Likelihood

In order to define a meaningful measure between the pose encoded
by a given particle y ∈ X and the available data zt = {VR, VS}, we
have to establish a relation between y and the 3D voxelized space.
This can be achieved by defining an appearance model of the HBM,
that is to “flesh out” the HBM skeleton with a volumetric model
of the limbs, torso and head. In our particular case, we will use
truncated cones in a the 3D discretized space. Let us define the voxel
representation of this fleshed HBM as the set VHBM

y related with the
pose described by y; Fig.2a depicts an example.

The set VHBM
y will allow us measuring the fitness of a given pose

y with respect to the input data zt. This set will be constructed by
performing an union (with addition) among the individual volumes
of the torso, VT , and all limbs, VPi,j , ∀i, j, that is:

VHBM
y =

]
Y∈{VT ,VPi,j

}

Y, 1 ≤ i ≤ NL, 1 ≤ j ≤ NP(i). (2)

Operator ] refers to the operation that assigns to each voxel of the
3D space the number of intersections among all body parts in that
position, as shown in Fig.2c.
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Fig. 2. HBM analysis based on the voxel set VHBM
y . In (a), an ex-

ample of the employed HBM. In (b), an invalid pose depicted with
false colors to differentiate body parts and, in (c), the set VHBM

y .
Blue voxels stand for places with only one body limb occupying that
space while green regions stand for places with two limbs occupy-
ing that space. Three limbs occupying the same region is an odd case
and may be produced with very awkward poses. Red regions denote
those voxels falling out of the scene.

According to the representation VHBM
y and the available raw

voxel data VR, we may define the output, double occupancy and
occupancy scores for every body part Y ∈

˘
VT , VPi,j

¯
, ∀i, j, as:

ρOut
Y =

| {V ∈ Y|V /∈ Analysis scene} |
|Y| , (3)

ρDO
Y =

|
˘
V ∈ Y|VHBM

y (V) > 1
¯
|

|Y| , (4)

ρOcc
Y =

|
˘
V ∈ Y|VHBM

y (V) ≥ 1&VR(V) 6= 0
¯
|

|Y| , (5)

where V(V) stands for the content of V at the position of voxel V
and |Y| for the number of non-zero elements in set Y . These set of
measures will allow assessing the fitness between the pose y and the
data VR. Output score ρOut

Y will quantize the amount of voxels of a
given body part that fall out of the analyzed scene. Interpenetration
among limbs may occur even when a valid pose is evaluated. In
this case, score ρDO

Y measures the degree of double occupancy or
interpenetration. These two figures will determine those regions of
the state space X to be avoided since poses resulting in high values
of ρOut

Y and/or ρDO
Y are likely to be invalid.

Finally, the occupancy score ρOcc
Y measures the fraction of the

body part that is occupied. Ideally, a good match will yield low
values of ρOut

Y and ρDO
Y and high values of ρOcc

Y , for every body part.
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Fig. 3. Angular constraints enforcement. In (a), particles are prop-
agated using a truncated Gaussian distribution N ? centered at yk

t−1

with covariance matrix Σ bounded between θ− and θ+ (green zone).
In (b), an example of particle propagation in the knee angle display-
ing how propagated particles never fall out the legal ranges (θ < 0).

Surface based Likelihood

Surface data is smoothed with a Gaussian mask and the obtained
voxel values are re-mapped between 0 and 1. This produces a voxel
map eVS

, in which each voxel is assigned a value related to its prox-
imity to a surface. Finally, the surface measurement is defined as:

ρSurf
Y =

1

|Y|
X
V∈Y

(1− eVS
(V)) , Y ∈ {VS

T , VS
Pi,j

},∀i, j. (6)

Joint likelihood function

Likelihood function w(zt,y
j
t ) is defined assuming a statistical inde-

pendence among limbs as:

w(zt,y) ∝ p
“
{VR

t , VS
t}|VHBM

y

”
=

Y
Y∈{VT ,VPi,j

}

p
“
{VR

t , VS
t}|Y

”
. (7)

As done previously in [7], likelihood function for individual body
parts is approximated to:

p
“
{VR

t , VS
t}|Y

”
∝ exp


−1

2
(d− µ)>Σ−1

Y (d− µ)

ff
, (8)

where parameters d, µ and ΣY are defined as:

d =
h
ρOut

Y , ρDO
Y , ρEmpty

Y , ρSurf
Y

i
, ρEmpty

Y = 1− ρOcc
Y , (9)

µ = 0, ΣY = diag(σ2
Out, σ

2
DO, σ2

Empty, σ
2
Surf).

Values of variances were empirically set by analyzing a part of the
analyzed corpus to σ2

Out = 0.01, σ2
DO = 0.01, σ2

Empty = 0.1, σ2
Surf = 0.1

leading to satisfactory results.

2.3. Particle Propagation

Kinematic restrictions imposed by the angular limits at each joint
may produce a more robust tracking output. Employing a previously
learnt motion model in the particle propagation step can improve
tracking results if annotated data is available [6]. However, these
methods are constrained to deal with motions present in the training
corpus thus being not suitable for unconstrained motion tracking. In
this paper, angular constraints are enforced in the propagation step
of the APF scheme. Usually, the propagation step consists in adding
a random component to the state vector of a particle as:

yk
t = yk

t−1 +N (0, Σ) = N (yk
t−1, Σ), (10)
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Fig. 4. Data quality influence. For every pair of voxel size sV and
number of cameras NC, we display the MMTA scores for different
number of annealing layers NL (y axis) and particles per layer Np

(x axis). Red dots mark the optimal operation point with minimal
absolute number of particles NLNp.

where N (µ, Σ) stands for a random multivariate Gaussian distribu-
tion of mean µ and covariance matrix Σ. Diagonal elements of co-
variance matrix Σ are set to half of the maximum expected variation
of each variable of the state space over one time step. However, this
propagation may lead to poses out of the joint legal angular ranges.
In our work, we present the following technique: when propagating
particles, angular constraints are taken into account and samples of
a truncated Gaussian distribution, denoted as N ?, are generated in-
stead of a complete Gaussian distribution, as shown in Fig.3. In this
way, particles are always generated within the allowed ranges.

3. EXPERIMENTS AND RESULTS

In order to test the proposed algorithm, the standard HumanEva [11]
dataset is employed. This dataset contains a set of 5 actions per-
formed by 3 different subjects at a resolution of 640x480 pixels and
a frame-rate of 25 fps. Ground truth data is available and two metrics
are defined (mean, µ, and standard deviation, σ, of the estimation er-
ror) towards providing quantitative and comparable results. The ini-
tial dataset was partitioned in a training dataset containing the 10%
of the total data to set up the tracking variables and the rest was used
for testing.

Let X = {x1,x2, ...,xM}, xm ∈ R3, denote the M landmark
positions of the HBM (typically, the body joints and the end of the
limbs) corresponding to the pose described by the state variable y
computed using forward kinematics [12]. Assuming that landmark
positions x̂m associated to particle yj

t are available, we can define
a matched marker estimation x̂m with respect to the ground truth
position xm as the one fulfilling ε = ‖xm − x̂m‖ < δ. This stands
for those estimations that fall δ-close to the ground truth position.
Then, the Multiple Marker Tracking Accuracy (MMTA), is defined
as the percentage of markers xm ∈ X fulfilling the ε < δ condition,
and the Multiple Marker Tracking Precision (MMTP), as the average
of the metric error between x̂m and xm, of all pairs fulfilling ε < δ.
Finally, these scores are averaged for all frames in the sequence.

Training dataset was evaluated using 3D reconstructions made
with different voxel sizes sV and using a different number of cam-
eras NC towards deciding the optimal number of layers NL and par-
ticles per layer Np and the influence of the quality of the input data
into the overall performance. MMTA score has been chosen as the
most significant figure to assess the APF performance as shown in
Fig.4 where high values of NC and low values of sV lead to better
performance since these magnitudes have a crucial influence in the
quality of the 3D reconstruction. The chosen working with point for
sV = 2 cm and NC = 7 is found to be NL = 6 and Np = 600,
leading to a total of 3600 efficient particles.
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Fig. 5. Human motion capture examples over the HumanEva dataset.

HumanEva dataset was analyzed using reconstructions made with
sV = 2 cm and NC = 7 producing the results in Table 1. Aver-
aged MMTA and MMTP scores indicates that in 71% of analyzed
frames, difference between the estimation and the ground truth is
below δ = 10 cm and the commited error in these frames has an
average of 9 cm. When comparing the performance for individual
actions, it can be seen that those involving fast motion (i.e. boxing
or jogging) exhibit a lower tracking performance than the others (i.e.
walking). Some examples are depicted in Fig.5.

µ (mm) σ MMTP (mm) MMTA
Walking 96.52 41.64 72.05 79.55

Jog 130.34 62.01 92.21 68.24
Throw/Catch 145.22 52.13 94.69 61.30

Gesture 124.87 45.66 90.43 69.17
Box 122.27 42.68 92.77 68.38

Average 121.18 45.92 90.17 71.36

Table 1. Quantitative results for the HumanEva dataset using
NL = 6 and Np = 600 with δ = 100 mm.

4. CONCLUSIONS AND FUTURE WORK

This paper presents a robust markerless approach for human motion
capture using multiple calibrated and synchronized cameras. Spatial
redundancy is exploited by generating a 3D voxelized reconstruc-
tion of the scene and a HBM is defined to perform the analysis.
Progressive fitting of the HBM through the APF algorithm using
an occupancy and surface likelihood function and a kinematically
constrained particle propagation model allowed an accurate estima-
tion of the body pose. Quantitative evaluation based on HumanEva
dataset assessed the robustness of the technique.

Future work aims at exploiting scalability of the HBM towards
designing fitting algorithms able to cope with occluded body parts
observed when there are occluding elements in the scene. Other re-
search lines aim at gait and motion disorders analysis. A comparison
with other existing methods using the same dataset is under study.
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