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Abstract. When applied to interactive seminars, the detection of acoustic 
events from only audio information shows a large amount of errors, which are 
mostly due to the temporal overlaps of sounds. Video signals may be a useful 
additional source of information to cope with that problem for particular events. 
In this work, we aim at improving the detection of steps by using two audio-
based Acoustic Event Detection (AED) systems, with SVM and HMM, and a 
video-based AED system, which employs the output of a 3D video tracking 
algorithm. The fuzzy integral is used to fuse the outputs of the three detection 
systems. Experimental results using the CLEAR 2007 evaluation data show that 
video information can be successfully used to improve the results of audio-
based AED. 

Keywords: Acoustic Event Detection, Fuzzy Integral, Multimodality, Support 
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1. Introduction 

Recently, several papers have reported works on Acoustic Events Detection (AED) 
for different meeting-room environments and databases e.g. [1] [2] [3]. The 
CLEAR’07 (Classification of Events, Activities and Relationships) international 
evaluation database consists of several interactive seminars which, among other 
things, contain “meeting”, “coffee break”, “question/answers” activities. The 
evaluation campaign showed that in that seminar conditions AED is a challenging 
problem. In fact, 5 out of 6 submitted systems showed accuracy below 25%, and the 
best system got 33.6% accuracy (see [2] [3] for results, databases and metrics). The 
single main factor that accounts for those low detection scores is the high degree of 
overlap between sounds, especially between the targeted acoustic events and speech.  

The overlap problem may be faced by developing efficient algorithms that work at 
the signal level, the model level or the decision level. Another approach is to use an 
additional modality that is less sensitive to the overlap phenomena present in the 
audio signal. In this work we aim at including video information in our existing 
audio-based detection systems using a fusion approach. Actually, the above 
mentioned seminar databases include both video and audio information from several 
cameras and microphones hanged on the walls of the rooms.  
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The information about movements and positions of people in a meeting room may 
be correlated with acoustic events that take place in it. For instance, the sources of 
events such as “door slam” or “door knock” are associated to given positions in the 
room; other events such as “steps” and “chair moving” are accompanied with changes 
of position of participants in the meeting room. Motivated by the fact that the “steps” 
sound class accounted for almost 35% of all acoustic events in the CLEAR’07 
evaluation database, in this work we use video 3D tracking information in order to 
improve the detection of that particular class. 

In our work, late fusion is used by combining the decisions from several 
information sources: two audio-based AED systems, with SVM and HMM, and a 
VIDEO-based AED system. Fusion is carried out with the Fuzzy Integral (FI) [4] [5], 
a fusion technique which is able to take into account the interdependences among 
information sources. Unlike non-trainable fusion operators (mean, product [4]) the 
statistical FI approach can be more beneficial in our challenging task. From the 
results, FI fusion shows better accuracy than either the single classifiers or the 
classical Weighted Arithmetical Mean (WAM) fusion operator [4].  

The rest of this paper is organized as follows: Section 2 describes video and audio-
based systems of AED. The fuzzy integral is described in Section 3. Section 4 
presents experimental results and discussions, and Section 5 concludes the work. 

2. Acoustic Event Detection systems 

In this work, detection of acoustic events is carried out with one VIDEO-based and 
two audio-based systems. The use of the three AED systems is motivated by the fact 
that each system performs detection in a different manner. The video-based system 
uses information about position of people in the room. The HMM-based AED system 
segments the acoustic signal in events by using a frame-level representation of the 
signal and computing the state sequence with highest likelihood. The SVM-based 
system does it by classifying segments resulting from consecutive sliding windows. 
The difference in the nature of the considered detection systems makes the fusion 
promising for obtaining a superior performance. 

2.1. Video-based detection system for the class “steps” 

2.1.1. Person tracking and multi-object tracking 
Person tracking is carried out by using multiple synchronized and calibrated cameras 
as described in [6]. Redundancy among camera views allows generating a 3D discrete 
reconstruction of the space being these data the input of the tracking algorithm. A 
particle filtering (PF) [7] approach is followed to estimate the location of each of the 
people inside the room at a given time t. Two main factors are to be taken into 
account when implementing a particle filter: the likelihood function and the 
propagation strategy.  
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Likelihood function p(zt|xt) can be defined as the likelihood of a particle belonging 
to the volume that corresponds to a person. For a given particle j occupying a voxel xt, 
its likelihood is formulated as: 
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where C(·) stands for the neighborhood over a connectivity q domain on the 3D 
orthogonal grid and |C(·)| represents its cardinality. Typically, connectivity in 3D 
discrete grids can be 6, 14 and 26 and in our research q=26 provided accurate results. 
Function d(·) measures the distance between a foreground voxel p in the 
neighborhood and the particle. 

Challenges in 3D multi-person tracking from volumetric scene reconstruction are 
basically twofold. First, finding an interaction model in order to avoid mismatches 
and target merging. Several approaches have been proposed [8] but the joint PF 
presented in [9] is the optimal solution to multi-target tracking using PFs. However, 
its computational load increases dramatically with the number of targets to track since 
every particle estimates the location of all targets in the scene simultaneously. The 
proposed solution is to use a split PF per person, which requires less computational 
load at the cost of not being able to solve some complex cross-overs. However, this 
situation is alleviated by the fact that cross-overs are restricted to the horizontal plane 
in our scenario (see Fig.1). 

Let us assume that there are M independent PF trackers, being M the number of 
humans in the room. Nevertheless, they are not fully independent since each PF can 
consider voxels from other tracked targets in either the likelihood evaluation or the 
3D re-sampling step resulting in target merging or identity mismatches. In order to 
achieve the most independent set of trackers, we consider a blocking method to model 
interactions. Many blocking proposals can be found in 2D tracking related works [9] 
and we extend it to our 3D case. 

 
  

Fig. 1. Particles from the tracker A (yellow ellipsoid) falling into the exclusion zone of tracker 
B (green ellipsoid) will be penalized 

The combination of the estimated 3D location together with geometric descriptors 
allows discarding spurious objects such as furniture and a simple classification of the 
person's pose as standing or sitting. The performance of this algorithm over a large 
annotated database [6] showed the effectiveness of this approach. 
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(a) (b) 

Fig. 2. In (a), values of the velocity during one development seminar (bottom) and reference 
“steps” labels (top). In (b), the histograms of log-velocities for “non-steps” (left hump) and 
“steps” (right hump). 

2.1.2. Feature extraction and “steps” detection 
The output of the 3D tracking algorithm is the set of coordinates of all the people in 
the room, which are given every 40ms. From those coordinates, we have to generate 
features that carry information correlated with “steps”. We assume that information 
about movements of people is relevant for “steps” detection. The movements of 
people in the meeting room can be characterized by a velocity measure. In a 2D plane, 
the velocity can be calculated in the following way:  
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where dx/dt and dy/dt are the values of velocity along x and y axes, respectively. 
Those values are calculated using a smoothed derivative non-casual filter h applied to 
the vector of positions of each person in the room. We tried several shapes of the 
impulse response of the derivative filter; best results were obtained using a linear non-
casual filter with the impulse response h(n) = [-m … -2 -1 0 1 2 … m] (zero 
corresponds to the current value and L=2*m+1 is the length of the filter).  
 Usually more than one person is present in the room, and each person has its own 
movement and velocity. The maximum velocity among the participants in the seminar 
is used as a current feature value for “steps”/ “non-steps” detection. 

Fig. 2 (a) plots the maximum value of velocity among participants for a 6-min 
seminar along with the corresponding ground truth labels. From it we can observe that 
there is certain degree of correspondence between peaks of velocity and true “steps”.  

The normalized histograms of the logarithm of velocity for “steps” and “non-
steps” obtained from development seminars are depicted in Fig. 2 (b), from which can 
be seen that “steps” are more likely to appear with higher values of velocity. 

The jerky nature of the “steps” hump results from a more than 10 times scarcer 
representation of “steps” with respect to “non-steps” in the development database. 
These two curves are approximated by two Gaussians via Expectation-Maximization  
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algorithm (EM). During detection on testing data the final decision for “steps”/ “non-
steps” classes is made using the Bayesian rule: 

)()|()|( jjj wPwxPxwP = , j={1,2}. (3) 

where P(w1) and P(w2) are prior probabilities for the class “steps” and the meta-class 
“non-steps” respectively, which are computed using the prior distribution of these two 
classes in development data and P(x|wj) are likelihoods given by the Gaussian 
models. 

To have a better detection of “steps” the length L of the derivative filter h(n) and 
several types of windows applied on h(n) were investigated. According to the results 
shown in Fig. 3, the best detection of “steps” on development data is achieved with a 
2-sec-long derivative filter and a Hamming window.  
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Fig. 3. Detection of “steps” on the development database as a function of the length of the 

derivative filter (in seconds) 

2.2. SVM-based AED system 

The SVM-based AED system used in the present work is the one that was also used 
for the AED evaluations in CLEAR 2007 [3] with slight modifications. The sound 
signal from a single MarkIII array microphone is down-sampled to 16 kHz, and 
framed (frame length/shift is 30/10ms, a Hamming window is used). For each frame, 
a set of spectral parameters has been extracted. It consists of the concatenation of two 
types of parameters: 1) 16 Frequency-Filtered (FF) log filter-bank energies, along 
with the first and the second time derivatives; and 2) a set of the following 
parameters: zero-crossing rate, short time energy, 4 sub-band energies, spectral flux, 
calculated for each of the defined sub-bands, spectral centroid, and spectral 
bandwidth. In total, a vector of 60 components is built to represent each frame. The 
mean and the standard deviation parameters have been computed over all frames in a 
0.5sec window with a 100ms shift, thus forming one vector of 120 elements.  

SVM classifiers have been trained using 1vs1 scheme on the isolated AEs, from 
two databases of isolated acoustic events, along with segments from the development 
data seminars, that include both isolated AEs and AEs overlapped with speech. The 
MAX WINS (pair-wise majority voting) [10] scheme was used to extend the SVM to 
the task of classifying several classes. After the voting is done, the class with the 
highest number of winning two-class decisions (votes) is chosen.  
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2.3. HMM-based AED system 

We formulate the goal of acoustic event detection in a way similar to speech 
recognition: to find the event sequence that maximizes the posterior probability of the 
event sequence W = (w1,w2, ...,wM), given the observations O =(o1, o2, ..., oT ): 

Wmax= argmax P(W|O) = argmaxP(O|W)P(W). (4) 

We assume that P(W) is the same for all event sequences. 
For building and manipulating hidden Markov models HTK toolkit is used [11]. 

Firstly, the input signal from a single MarkIII-array microphone is down-sampled to 
16 kHz, and 13 FF coefficients with their first time derivatives are extracted, using a 
Hamming window of size 20-ms with shift 10-ms. There is one HMM for each 
acoustic event class, with five emitting states and fully connected state transitions. We 
also used a similar HMM for silence. The observation distributions of the states are 
Gaussian mixtures with continuous densities, and consist of 9 components with 
diagonal covariance matrices. The “speech” class is modelled with 15 components as 
its observation distribution is more complex. Actually, the chosen HMM topology 
showed the best results during a cross-validation procedure on the development data. 
Each HMM is trained on all signal segments belonging to the corresponding event 
class in the development seminar data, using the standard Baum-Welch training 
algorithm. During testing the AED system finds the best path through the recognition 
network and each segment in the path represents a detected AE. 

3. Fusion of information sources 

3.1. The fuzzy integral and fuzzy measure 

We are searching for a suitable fusion operator to combine a finite set of information 
sources . Let  be a set of trained classification systems 
and  be a set of class labels. Each classification system takes as 

input a data point  and assigns it to a class label from

},...,1{ zZ = },...,,{ 21 zDDDD =
},...,,{ 21 Nccc=Ω

nx ℜ∈ Ω .  
Alternatively, each classifier output can be formed as an N-dimensional vector that 

represents the degree of support of a classification system to each of N classes. It is 
convenient to organize the output of all classification systems in a decision profile:  
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where a row is classifier output and a column is a support of all classifiers for a class. 



Inclusion of Video Information for Detection of Acoustic Events using the Fuzzy 
Integral      7 

We suppose these classifier outputs are commensurable, i.e. defined on the same 
measurement scale (most often they are posterior probability-like).  

Let’s denote hi, i=1,..,z, the output scores of z classification systems for the class cn 
(the supports for class cn, i.e. a column from decision profile) and before defining how 
FI combines information sources, let’s look to the conventional WAM fusion 
operator. A final support measure for the class cn using WAM can be defined as: 

∑
∈
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iWAM hiM )(μ  
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The WAM operator combines the score of z competent information sources 
through the weights of importance expressed by ( )iμ . The main disadvantage of the 
WAM operator is that it implies preferential independence of the information sources. 

Let’s denote with }),({),( jiji μμ =  the weight of importance corresponding to the 
couple of information sources i and j from Z. If μ  is not additive, i.e. 
( ) ( ) ( )[ jiji ]μμμ +≠,  for a given couple , we must take into account some 

interaction among the information sources. Therefore, we can build an aggregation 
operator starting from the WAM, adding the term of “second order” that involves the 
corrective coefficients 

Zji ⊆},{

( ) ( ) ( )[ ]jiji μμμ +−, , then the term of “third order”, etc. 
Finally, we arrive to the definition of the FI: assuming the sequence hi, i=1,..,z, is 
ordered in such a way that zhh ≤≤ ...1 , the Choquet fuzzy integral can be computed 
as 
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where 0ø)()1( ==+ μμ z . )(Sμ can be viewed as a weight related to a subset S of 
the set Z of information sources. It is called fuzzy measure for it has to meet 
the following conditions:  

ZTS ⊆,

1)( 0,ø)( == Zμμ ,   Boundary 
)( )( TSTS μμ ≤⇒⊆ ,  Monotonicity 

For instance, as an illustrative example let’s consider the case of 2 information 
sources with unordered system outputs h1=0.4 and h2=0.3, and corresponding fuzzy 
measures μ(1)=0.6 and μ(2)=0.8. Note that μ(0)=0 and μ(1,2)=1. In that case, the 
Choquet fuzzy integral is computed as MFI(μ,h)= (μ(1,2)- μ(1))h2+ μ(1)h1=0.36.  

3.2 Synchronization and normalization of system outputs 

In order to fuse 3 information sources (SVM-based, HMM-based, and VIDEO-based 
systems), their outputs must be synchronized in time. In our case, the SVM system 
provides voting scores every 100ms, the VIDEO system every 40ms, and the HMM 
system gives segments of variable length which represent the best path through the 
recognition network. The outputs of the 3 systems were reduced to a common time 
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step of 100ms. For that purpose the output of the VIDEO-based system was averaged 
on each interval of 100ms, while for the HMM system each segment was broken into 
100ms-long pieces.  

On the other hand, to make the outputs of information sources commensurable we 
have to normalize them to be in the range [0 1] and their sum equal to 1.  

As it was said in Section 2.2, when the SVM classification system is used alone, 
after voting, the class with the highest number of winning two-class decisions (votes) 
is chosen. In case of a subsequent fusion with other classification systems numbers of 
votes obtained by non-winning classes were used to get a vector of scores for the 
classes. For the HMM system, each hypothesis of an AE given by the optimal Viterbi 
segmentation of the seminar is then decoded by the trained HMM models of winning 
and each non-winning AE class in order to obtain the corresponding log-likelihood 
values which form vector of scores.  In case of VIDEO-based AED system we obtain 
scores for the two classes “steps” and “non-steps” as the distance between the values 
of log-velocity and the decision boundary. To make the scores of VIDEO-based and 
HMM-based systems positive min-max normalization [12] is used. 

The soft-max function is then applied to the vector of scores of each detection 
system. This function is defined as: 

∑=
i

iinormalizedi qkqkq )*exp(/)*exp(  (8) 

where the coefficient k controls the distance between the components of the vector 
[q1, q2, …,qN].For instance, in extreme case when k=0, the elements of the vector after 
soft-max normalization would have the same value 1/N, and when k→∞ the elements 
tend to become binary. The normalization coefficients are different for each AED 
system, and they are obtained using the development data. 

4. Experiments and results 

4.1. Database and metric 

In our experiments, the CLEAR’07 evaluation database is used [3]. It consists of 25 
interactive seminars, approximately 30min-long that have been recorded by AIT 
(Athens Information Technology), ITC (Instituto Trentino di Cultura), IBM, UKA 
(Universität Karlsruhe), and UPC (Universitat Politècnica de Catalunya) in their 
smart-rooms. In our experiments for development and testing we used only recordings 
of 3 sites (AIT, ITC, and UPC) because the IBM data is not included in the testing 
database, and the performance of the video tracking algorithm on the UKA data is 
very low, due to errors presented in the video recordings (heavy radial distortions in 
zenithal camera). In other respects, the training/testing division is preserved from 
CLEAR’07 evaluation scenario. 

The AED evaluation uses 12 semantic classes (classes of interest), i.e. types of 
AEs that are: “door knock”, “door open/slam”, “steps”, “chair moving”, “spoon/cup 
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jingle”, “paper work”, “key jingle”, “keyboard typing”, “phone ring”, “applause”, 
“cough”, and “laugh”. Apart from the 12 evaluated classes, there are 3 other events 
present in the seminars (“speech”, “silence”, “unknown”) which are not evaluated. 

The Accuracy metric [3] is used in this work and it is defined as the harmonic 
mean between precision and recall computed for the classes of interest, where 
precision is number of correct hypothesis AEs divided by total number of hypothesis 
AEs, and recall as number of correctly detected reference AEs divided by total 
number of reference AEs. 

4.2. One-stage and two-stage fuzzy integral approaches 

In our case, not all information sources give scores for all classes. Unlike SVM and 
HMM-based systems, which provide information about 15 classes, the VIDEO-based 
system scores are given only for the class “steps” and the meta-class “non-steps”. 
Fusion of information sources using the fuzzy integral can be done either by 
transforming (extending) the score for “non-steps” from the VIDEO-based system to 
the remaining 14 classes which do not include “steps” or, vice-versa, transforming 
(restricting) the scores of 14 classes provided by the SVM and HMM-based systems 
to one score for the meta-class “non-steps”. In the former case, the fusion is done at 
one stage with all the classes. In the latter, a two-stage approach is implemented, 
where on the first stage the 3 detection systems are used to do “steps”/ “non-steps” 
classification and on the second stage the subsequent classification of the “non-steps” 
output of the first stage is done with both SVM and HMM-based systems. The one-
stage and two-stage approaches are schematically shown in Fig. 4. 
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Fig. 4. One-stage (a) and two-stage (b) fusion with the fuzzy integral 

For one-stage fusion (Fig. 4 (a)) the score V of “non-steps” of the VIDEO-based 
system is equally distributed among the remaining 14 classes assigning to each of 
them score V before applying soft-max normalization. At the first stage of the two-
stage approach, all the classes not labeled as “steps” form the “non-steps” meta-class. 
The final score of “non-steps” is chosen as maximum value of scores of all the classes 
that formed that meta-class. 

For the weights in WAM operator we use uniform class noise model with the 
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detection system [4]. The individual FMs for the fuzzy integral fusion are trained on 
development data in our work using the gradient descent training algorithm [13]. The 
5-fold cross validation on development data was used to stop the training process to 
avoid overtraining. The tricky point was that during training the algorithm minimizes 
the total error on development data. As the number of data per each class is non-
uniform distributed, during the training process the number of detection mistakes for 
the most representative classes (“speech”, “silence”) is decreased at the expense of 
increasing errors on the classes with lower number of representatives. The final metric 
scores, however, only 12 classes which are the classes with much smaller number of 
representatives than e.g. “speech”. This way, the FI with the trained FM measure 
tends to detect correctly the classes that are not scored by the metric. To cope with 
this problem, we firstly fixed the FM of the classes of no interest (“speech”, 
“unknown”, and “silence”) to be in the equilibrium state [13] and, secondly, calculate 
the cross-validation accuracy only for the classes of interest. 

4.3. Results and discussion 

The results of first-stage fusion for “steps”/“non-steps” detection are presented in 
Fig. 5. It can be seen that fusion of SVM and HMM-based systems leads to a small 
improvement, while in combination with video information the improvement is 
noticeable. It is worth to mention that 48.1 % of accuracy for “steps” detection would 
indicate a little worse decision than random choice if the metric scored both “non-
steps” meta-class and “steps” class. However, in our case, only the “steps” class is 
scored and thus 48.1% indicates that not only around 48.1% of “steps” are detected 
(recall) but also that 48.1% of all produced decisions are correct (precision). On the 
first stage the FI fusion gives superior results in comparison with WAM fusion. This 
indicates that a certain interaction between information sources for “steps” detection 
exists that can not be captured by WAM fusion operator.  
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Fig. 5. Accuracy of “steps” detection on the first stage using the fuzzy integral 

The final results of detection of all 15 classes of AEs are presented in Fig. 6. It can 
be seen that total system accuracy benefits from better recognition of “steps” class. 



Inclusion of Video Information for Detection of Acoustic Events using the Fuzzy 
Integral      11 

Again in this experiment the FI fusion shows better performance then WAM, 
resulting in a final accuracy of 40.5%. 
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Fig. 6. Total system accuracy based on the first and the second stage fusion 

One-stage fusion explained in the previous subsection showed lower scores - only 
37.9% for WAM and 38.4% with FI. This fact may indicate that in our particular case 
spreading no-information for classes with missing scores can be harmful and, 
conversely, to compress the scores of many classes to binary problems can be more 
beneficial. However, the way of extending/compressing of the scores should be 
studied in more depth to further support this statement. 

5. Conclusions 

In this work, by using data from interactive seminars, we have shown that video 
signals can be a useful additional source of information to cope with the problem of 
acoustic event detection. Using an algorithm for video 3D tracking, video-based 
features that represent the movement have been extracted, and a probabilistic 
classifier for "steps"/"non-steps" detection has been developed. The fuzzy integral 
was used to fuse the outputs of both that video-based detector and two audio-based 
AED systems which use either SVM or HMM classifiers. Results show that video 
information helps to detect acoustic “steps” events, and future work will be devoted to 
extend the multimodal AED system to more classes. 
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