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Abstract. This paper presents a general analysis framework towards
exploiting the underlying hierarchical and scalable structure of an ar-
ticulated object for pose estimation and tracking. The Scalable Human
Body Model (SHBM) is presented as a set of human body models or-
dered following a hierarchy criteria. The concept of annealing is applied
to derive a generic particle filtering scheme able to perform a sequential
filtering over the models contained in the SHBM leading to a structural
annealing process. This scheme is applied to perform human motion
capture in a multi-camera environment. Finally, the effectiveness of the
proposed system is addressed by comparing its performance with the
standard and annealed particle filtering approaches over an annotated
database.

1 Introduction

Automatic capture and analysis of human motion is a highly active research area
due both to the number of potential applications and its inherent complexity.
This research area contains a number of hard and often ill-posed problems such
as inferring the pose and motion of a highly articulated and self-occluding non-
rigid 3D object from a set of images. Applications of motion analysis range from
gesture recognition or gait analysis to medical applications and human-computer
interfaces.

Recovering the pose of an articulated structure such as the human body
involves estimating highly dimensional and multi-modal statistic distributions.
Monte Carlo based techniques [1] have been thoroughly applied due to its ability
to perform this task with an affordable computational complexity. Particle filter-
ing [5] has been the seminal idea to develop specific systems aiming at recovering
human body pose such as the annealed particle filter [3], the hierarchical sam-
pling [8] or the partitioned sampling [6] among others. A main characteristic of
these approaches is a human body model that is selected beforehand and fitted
to the input data. This paper presents a general analysis framework that exploits
the underlying hierarchical and scalable structure of an articulated object by us-
ing a scalable human body model together with an annealed particle filtering
strategy. A sequential fitting is performed over a set of human body models with
increasing level of detail by applying the concept of structural annealing. Indeed,
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some of the aforementioned tracking schemes may be considered as particular
cases of our general framework.

The proposed scheme is applied to recover and track human body pose in
a multi-camera scenario. However, instead of performing our measures on each
input image, our system first generates a 3D voxel-based representation of the
person, and then performs the matching of the kinematic models directly in this
3D space. Finally, the efficiency of the proposed system is addressed by analyzing
a set of sequences from the HumanEva-I database [4] and comparing the results
with the standard and annealed particle filtering approaches.

2 Monte Carlo based tracking

The evolution of a physical articulated structure can be better captured with
model-based tracking techniques. The articulated structure can be fully de-
scribed by a state vector X ∈ RD that we wish to estimate. From a Bayesian
perspective, the articulated motion estimation and tracking problem is to recur-
sively estimate a certain degree of belief in the state vector Xt at time t, given
the data Z1:t up to time t. Thus, it is required to calculate the pdf p(Xt|Z1:t).

Particle Filtering (PF) [1] algorithms are sequential Monte Carlo methods
based on point mass (or “particle”) representations of probability densities.
These techniques are employed to tackle estimation and tracking problems where
the variables involved do not hold Gaussianity uncertainty models and linear dy-
namics. PF expresses the belief about the system at time t by approximating the
posterior distribution p(xt|Z1:t), xt ∈ X , and representing it by a weighted parti-
cle set {(x, π)j}t, 1 ≤ j ≤ Np. In this paper, a Sample Importance Re-sampling
(SIR) based strategy is adopted to drive particles along time.

PF is an appropriate technique to deal with problems where the posterior
distribution is multimodal. To maintain a fair representation of p(xt|Z1:t), a cer-
tain number of particles are required in order to find its global maxima instead
of a local one. It has been proved in [6] that the amount of particles required by
a standard PF algorithm [5] to achieve a successful tracking follows an exponen-
tial law with the number of dimensions. Articulated motion tracking typically
employs state spaces with dimension D ∼ 25 thus normal PF turns out to be
computationally unfeasible.

There exist several possible strategies to reduce the complexity of the prob-
lem based on refinements and variations of the seminal PF idea. MacCormick
et al. [6] presented partitioned sampling as a highly efficient solution to this
problem. However, this technique imposes a linear hierarchy of sampling which
may not be related to the true body structure assuming certain statistical inde-
pendence among state variables. Hierarchical sampling presented by Mitchelson
et al. [8] tackles the dimension problem by exploiting the human body structure
and hierarchically explore the state space. Finally, annealed PF presented by
Deutscher et al. [3] is one of the most general solutions to the problem of dimen-
sionality. This technique employs a simulated annealing strategy to concentrate
the particles around the peaks of the likelihood function.
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Fig. 1. Examples of inclusive Scalable Human Body Models. In (a), the refinement
hierarchy model and, in (b), the construction model.

3 Scalable Human Body Model

A Human Body Model (HBM) H is employed to define a meaningful relation
among the parameters contained in X . This HBM mimics the structure of the
skeleton representing it by a chain of rigid bodies (links) interconnected to one
other by joints. The number of independent parameters will define the degrees
of freedom (DoF) associated to a given HBM. HBMs employed in the literature
range from simple configurations involving few DoF [2] to highly detailed models
with up to 25 DoF [3]. A Scalable Human Body Model (SHBM) can be defined
as a set of HBM:

M = {H0, · · · ,Hi, · · · ,HM−1} , (1)

where the sub-index denotes an order within M. To achieve scalability, a hierar-
chy among the elements of M must be defined. A criteria that grants hierarchy
to the elements Hi in M is the inclusion condition:

Hi ⊂ Hj , i < j, (2)

where the inclusion operation can be understood in terms of the detail or infor-
mation provided by each model. This information measure is a design parameter
and can be defined, for instance, as the number of joints/links, DoF, etc. Two
examples of the inclusion operation are the refinement and constructive model.
In the first one, depicted in Fig.1a, a model in a higher hierarchy level refines
the one in the lower level by adding new limbs to it. In the constructive model,
depicted in Fig.1b, segments are progressively added to all limbs until reaching
the most detailed HBM.

4 Hierarchical Structure based Annealed Particle
Filtering (HS-APF)

4.1 Theory

This papers presents a general analysis framework towards exploiting the un-
derlying hierarchical structure of an articulated object for pose estimation and
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Fig. 2. Hierarchical Structure Annealed Particle Filter scheme for M = 3 models in
the SHBM.

tracking. Assuming that a SHBM M with a given hierarchy has been defined, a
sequential fitting process is conducted over the several HBM Hi ∈ M. In order
to carry out this task, we borrow the idea of annealing [3] where the particles are
placed around the peaks of the likelihood function by means of a recursive search
over a set of decreasingly smoothed versions of this function. Our proposal is to
use the set of progressively refined HBMs constained in M instead of a set of
smoothed versions of the likelihood function. This process mimics the annealing
idea of the coarse-to-fine analysis of the likelihood function thus leading to a
structural annealing process.

The overall operation of the proposed scheme is to filter the initial distribu-
tion associated to the simplest HBM H0 and then combine the resulting particle
set with the initial particle set of the following model, H1. This process is per-
formed for all the models in the SHBM until reaching the last one. Information
contained by the particle set of the last model is back-propagated to the models
with lower hierarchy rank thus refining their associated particle sets and closing
the information filtering loop. The scheme of the proposed technique is depicted
in Fig.2 for M = 3

Given a SHBMM containing M HBMsHi, a set of NHi particles, {(x, π)j}Hi
t ,

associated to every Hi is defined at a given time t. It must be noted that, due
to the hierarchy established in the SHBM, a mapping between the defining pa-
rameters of two consecutive HBMs can be always derived. Typically, this can
be achieved by a linear or direct mapping between the involved variables. A
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fitness function wHi
(x,Zt) measuring the likelihood between a particle and the

incoming data Zt is also constructed.
When a new measurement Zt is available, an structural annealing iteration

is performed. The hierarchical structure based annealed particle filtering can be
summarized as follows:

– Starting from model H0, its associated particle set {(x, π)j}Hi
t−1 is resam-

pled with replacement. Then the filtered state {(x̃, π̃)j}Hi
t is constructed by

applying a propagation model P(·, ·) and a weighting function wH0(·, ·) to
every particle as:

x̃j,t = P(xj,t, σH0) = xj,t + N, (3)
π̃j,t = wH0(x̃j,t,Zt), (4)

where N is a multivariate Gaussian noise with mean 0 and a covariance
matrix Σ = diag{σH0}. Weights are normalized such that

∑
j π̃j = 1. At

this point, the output estimation of this model XH0,t can be computed by
applying

XH0,t =
NH0∑
j=1

π̃j,tx̃j,t. (5)

– For the following HBMs, i > 0, the filtered particle set of the previous model
in the hierarchy, {(x̃, π̃)j}Hi−1

t , is combined through the operator G with
the particle set associated to model Hi, {(x, π)j}Hi

t−1. State space variables
associated to Hi contain information from model Hi−1 due to the imposed
hierarchy relation. Since these variables have been already filtered, this up-
dated information can be transferred to particles of model Hi in order to
generate an improved initial particle set. Operator G has been inspired in
the genetic algorithms theory and performs a crossover operation combining
the common state variables of the two HBMs. Particles with a high weight in
HBMHi−1 are combined with particles with a high weight in HBMHi. Com-
mon variables in Hi particles are replaced by the already filtered variables
in Hi−1 thus generating a new particle set that contains some information
from the previous layer. However, it is also allowed some combination be-
tween particles with high weights from Hi−1 with particles with low weights
in Hi and viceversa. In this way, some variability is introduced thus being
more robust to rapid motion and sudden pose changes.
Then, the filtered state {(x̃, π̃)j}Hi

t is constructed as:

x̃j,t = P(xj,t, α
iσH0 , α

i−1σH1 , . . . , σHi) = xj,t + N, (6)
π̃j,t = wHi(x̃j,t,Zt), (7)

where N is a multivariate Gaussian noise with mean 0 and a covariance
matrix Σ = diag{αiσH0 , α

i−1σH1 , . . . , σHi
} with α < 1. This propagation

function assigns a higher drift to the newly added variables of model Hi

while assigning a lower drift to those that have been more recently filtered
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(a) (b) (c) (d) (e)

Fig. 3. Example of the execution of the HS-APF using a SHBM based on a refinement
hierarchy. In (a), the original image is depicted and in (b)-(d) the sequential fitting of
the models contained in the SBHM is shown (where the superimposed yellow lines are
the particles associated to this HBM). In (e), the final pose estimation.

in the previous models. At this point, the output estimation of this model
XHi,t can be computed.

– Once reaching the highest hierarchy level, that is the most detailed HBM, the
information contained in the particle set {(x̃, π̃)j}HM

t is back-propagated to
the other models in the hierarchy by means of the aforementioned crossover
operator G. In this way, the particle sets will be refined thus closing the
filtering loop.

An example of the execution of this scheme is depicted in Fig.3.

4.2 Implementation

For a given frame in the video sequence, a set of N images are obtained from
the N cameras (see a sample in Fig.4a). Each camera is modeled using a pinhole
camera model based on perspective projection with camera calibration infor-
mation available. Foreground regions from input images are obtained using a
segmentation algorithm based on Stauffer-Grimson’s background learning and
substraction technique [9] as shown in Fig.4b. Redundancy among cameras is
exploited by means of a Shape-from-Silhouette (SfS) technique [7]. This process
generates a discrete occupancy representation of the 3D space (voxels). A voxel
is labelled as foreground or background by checking the spatial consistency of its
projection on the N segmented silhouettes (see a sample in Fig.4c). These data
will be the input information fed to our HS-APF scheme, that is Zt. However,
this 3D reconstruction is corrupted by spurious voxels, holes, etc. introduced due
to wrong segmentation and camera calibration inaccuracies.

Every particle defines an instance of the pose of a given HBM Hi. In order
to relate this pose with the input 3D data, this model is fleshed out with super-
ellipsoids associated to every limb part (see an example in Fig.3e). Let us denote
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(a) (b) (c)

Fig. 4. Input data generation example. In (a), a sample of the original images. In (b),
foreground segmentation of the input images employed by the SfS algorithm. In (c),
example of the binary 3D voxel reconstruction.

this 3D HBM representation of the particle state as Dxj
. The weighting function

wHi(xj ,Zt) relating the state of a particle xj with the input data Zt is defined
as:

wHi
(xj ,Zt) = exp

{
−

(
1−

#
(
Dxj

∩ Zt

)
#Dxj

)}
, (8)

where #(·) indicates the cardinality of the set, that is the number of foreground
voxels in enclosed volume. This likelihood function may be seen as a measure of
the overlap between the Dxj and Zt.

5 Evaluation and Results

In order to prove the effectiveness of the proposed pose estimation and track-
ing scheme, a series of experiments have been conducted over a part of the
HumanEva-I database [4], thus allowing fair comparison with other algorithms.
The original data contained approximately 2000 frames at 25 fps recorded with 3
color and 4 greyscale calibrated cameras at a resolution of 640x480 pixels (how-
ever, only the 4 cameras were used to generate the 3D reconstruction of the
scene). The 3D position of the most relevant joints in the body is provided in
this database captured by means of a professional MOCAP system. This infor-
mation will allow computing quantitative metrics in order to compare the body
pose estimation with respect to the groundtruth.

Several metrics are employed to quantify the performance of the employed
algorithm. HumanEva-I project proposes two point-based metrics based on the
error measured at the position of the joints, namely the mean of the error µ and
its associated standard deviation σ. Since the most natural way to encode a pose
is by using the angles associated to every joint, we also provide two angle-based
metrics: the mean of the angular error µθ and its associated standard deviation
σθ.

The proposed system was compared to the Standard PF (SPF) [5] and the
Annealed PF (APF) [3] approaches. The HS-APF scheme employed a SHBM
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Fig. 5. Evolution of the estimation of the compared tracking systems for the elbow
and the knee angles during a walking cycle.

based on a refinement hierarchy as depicted in Fig.1a. In order to provide a fair
comparison, the input data and the initial variance parameters employed by the
propagation function were the same for all the filters. These variance parameters
were set to be the half of the maximum expected movement associated to each
joint. The overall number of particles employed by every filter was the same:
NSPF = 1000, NAPF = 250 (with 4 annealing layers) and NHi

= {250, 500, 250}.
Quantitative results of these experiments have been reported in Table 1 and

Fig.5 showing the effectiveness of the HS-APF in comparison with the PF and
APF approaches. Metrics µ and σ quantize the error when estimating the po-
sition of the body joints and there is a relative 33% error reduction from the
SPF to the HS-APF, and a 19.5% reduction from APF to HS-APF. Metrics µθ

and σθ quantize the error in terms of angles, being perhaps a more informative
measure. In this case, there is a relative 51.5% angular error reduction from SPF
to HS-APF and a 33% reduction from APF to HS-APF. Typically, when the
state space has a high dimensionality, the number of particles required by the
SPF is very high thus not operating accurately with 1000 particles. This prob-
lem is efficiently addressed by APF and a noticeable improvement is achieved.
Finally, HS-APF exploits the underlying structure of the articulated model thus
achieving a better performance. A visual example is depicted in Fig.6. In this
example, PF scheme is unable to properly estimate the pose with only 1000
particles while APF does not recover the pose of some limbs (in this case a leg).
Finally, HS-APF can retrieve the correct pose taking advantage of the scalable
human body model.

6 Conclusions and Future Work

This paper presents a general framework to address estimation and tracking
problems where a scalable hierarchy can be defined within the analysis model.
Exploiting this hierarchy allows the system to deal with noisy input data thus



Hierarchical Structured based Annealed Particle Filter 9

µ σ µθ σθ

SPF 172.87 28.43 14.75 07.86
APF 143.16 23.01 10.79 05.77

HS-APF 115.21 20.32 07.21 03.14

Table 1. Quantitative results for the walking action of the subjects S2 and S3 of the
HumanEva-I dataset. Results are shown in millimeters and degrees.

(a) (b) (c) (d)

Fig. 6. Example of pose estimation with several filtering schemes. Legend: (a) original
image, (b) PF, (c) APF, (d) HS-APF.

providing a robust solution. Human motion capture is one of such cases and
the proposed scheme proved effective to estimate and track pose. Quantitative
results comparing the Hierarchical Structure based Annealed Particle Filtering
with the Standard Particle Filter and the Annealed Particle Filter showed the
effectiveness of our approach.

Future research involves defining new hierarchy relations within the analysis
models and a further validation of this system with larger databases including
unconstrained motion and more than one subject in the scene. Including sur-
face and color information will allow constructing more discriminative likelihood
functions leading to a lower number of particles required by the HS-APF scheme.
Applications in other signal processing fields such as audio processing are under
study.
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