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Abstract—This paper presents a novel view-independent
approach to the recognition of human gestures of several
people in low resolution sequences from multiple calibrated
cameras. In contraposition with other multi-ocular gesture
recognition systems based on generating a classification on
a fusion of features coming from different views, our system
performs a data fusion (3D representation of the scene) and
then a feature extraction and classification. Motion descrip-
tors introduced by Bobick et al. for 2D data are extended
to 3D and a set of features based on 3D invariant statistical
moments are computed. Finally, a Bayesian classifier is em-
ployed to perform recognition over a small set of actions. Re-
sults are provided showing the effectiveness of the proposed
algorithm in a SmartRoom scenario.

Index Terms—Human Gesture Recognition, Information
Fusion, 3D Processing, Motion Analysis

|. INTRODUCTION

Analysis of human motion and gesture in image se-
quences is a topic that has been studied extensively [1]
and detection and recognition of several human centered
actions are the basis of these studies. The current paper
addresses the problem of recognizing gestures of multiple
persons in a SmartRoom in the framework of a motion-
based analysis from multiple views. Multiple camera sys-
tems have been widely used for image and video analysis
tasks in SmartRooms, surveillance, human-computer in-
terfaces and scene understanding. From a mathematical
viewpoint, multiple view geometry has been addressed in
[2], [3] , but there is still work to do for the efficient fu-
sion of information from redundant camera views and its
combination with image analysis techniques for object de-
tection, tracking or higher semantic level analysis such as
attitudes and behaviors of individuals.

Methods for motion-based recognition of human ges-
tures proposed in the literature [1] have often been devel-
oped to deal with sequences from a single perspective [4],
[5]. Considerably less work has been published on recog-
nizing human gestures using multiple cameras. Monoc-
ular human gesture recognition systems usually require
motion to be parallel to the camera plane and are very
sensitive to occlusions. On the other hand, multiple view-
points allow exploiting spatial redundancy, overcome am-
biguities caused by occlusion or segmentation errors and
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Fig. 1. System flowchart: acquisition, 3D data generation and
filtering, motion analysis, robust feature extraction and clas-
sification.
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provide 3D position information as well.

From an information processing perspective, most of
the existing approaches to multiple view gesture recogni-
tion rely on information fusion at the feature level. This
means that multiple inputs are separately analyzed to gen-
erate a motion description and then a classification of the
gesture over these data is performed [4], [6]. This paper
explores the complementary approach, first performing a
fusion of the incoming data and then extracting 3D motion
description features to perform classification.

We propose a method for 3D gesture recognition which
is both robust to environmental conditions and computa-
tionally simple for real-time applications. Data fusion is
achieved by exploiting redundancy among camera views
to obtain a 3D representation of the scene. For the recog-
nition of the movement, an extension of the motion rep-
resentations proposed in [4] are presented: Motion His-
tory Volume and Motion Energy Volume. Finally, a set of
robust 3D invariant statistical moments [7] are computed
as a feature vector for classification in a Bayesian frame-
work. Quantitative results for the proposed algorithm are
provided as well as a comparison with other motion-based
gesture recognition systems [6].

This method has been successfully applied to a multi-
camera SmartRoom scenario in the framework of a scene
understanding project involving recognition of human
gestures in meetings. Other fields where our algorithm



has potential applicability are disabled people interfaces,
body and gait analysis or domotics.

Il. SYSTEM OVERVIEW

According to the flowchart depicted in Fig.I the system
comprises four data processing modules: image acquisi-
tion, 3D data processing and temporal analysis and feature
extraction and classification.

For a given frame in the video sequence, a set of Vv
images are obtained from the N cameras. Each cam-
era is modeled using a pinhole camera model based on
ideal perspective projection. Accurate calibration infor-
mation is available. Foreground regions from input im-
ages are obtained using a segmentation algorithm based
on Stauffer-Grimson’s background learning and substrac-
tion technique [8], [9]. It is assumed that the moving ob-
jects are human people. Segmented images, encoded as
a binary mask, are the input information for the rest of
image analysis modules described here since no color in-
formation is required.

A. 3D Process Module

Prior to any further image analysis, the scene must be
characterized in terms of space disposition and configura-
tion of the foreground volumes, i.e. people candidates, in
order to select those potential 3D regions where a gesture
may appear. Images obtained from the multiple view cam-
era system allow exploiting spatial redundancies in order
to detect these 3D regions of interest. This task is carried
out by the 3D processing module.

Once foreground regions are extracted from the set of
N original images at time ¢, a set of A/ 3D points x*,
0 < k < M, corresponding to the top of each 3D de-
tected volume in the room is obtained by applying a robust
Bayesian correspondence algorithm and tracking, as de-
scribed in [10]. The information given by the established
correspondences allows defining a region of interest (ROI)
described by a bounding box B*, centered on each 3D top
x* with an average size adequate to contain a human can-
didate (see Fig.2(a)). This process allows reducing the
complexity of the system discarding empty space regions
not to be analyzed by forthcoming modules thus increas-
ing the performance of the whole system.

As mentioned before, our approach to motion-based
gesture recognition relies on feature extraction and clas-
sification over a fusion of the incoming information from
the V cameras. Let us define a general fusion method
from the data obtained by all N cameras at time instant ¢
as the set

Q(x,t)={L,(%x,t),B*(x,t),R()} 0<n<N,
()

where x and x state for 3D and 2D coordinates respec-

(b)

Fig. 2. Example of the outputs from the 3D processing module
in the SmartRoom scenario. In (a), multiview correspon-
dences among regions of interest (ROISs) are correctly estab-
lished. In (b), example of the data fusion set 2 (x, ¢) pro-
posed in this paper.

tively, I, (x,t) is the segmented image captured by j-th
camera, B¥ (x,t) are the estimated volume ROIs and
function R(-) denotes the chosen data fusion procedure.
In the current scenario where information present in the
N images is originated by a common real 3D scene cap-
tured from different viewpoints, it is a sound assumption
that a good data fusion process might be the reconstruction
of the 3D scene itself. Other approaches to this problem
[11] generate new synthetic views by placing virtual cam-
eras in an orthogonal coordinate system related with the
center of the action as a data fusion process. By working
directly on the 3D result of the data fusion, our approach
better captures the information available from the multi-
ple views avoiding any redundancy on the data fed to the
analyzer.

Taking the data provided by the foreground segmen-
tation and the ROIs as input, reconstruction of 3D mov-
ing objects in the scene can be achieved by defining R(-)
as a N-view silhouette consistency check [12]. This pro-
cess generates a discrete occupancy representation of the



3D space (voxels). Information derived from the multiple
ROIs allow labeling the voxels as belonging to one person
or another. In spite of this fairly simple election of R(-)
compared with more complex reconstruction procedures
[13], data fusion still achieves enough accuracy for our
purposes.

The data obtained with this 3D reconstruction is cor-
rupted by spurious voxels introduced due to wrong seg-
mentation, camera calibration inaccuracies, etc. Tempo-
ral analysis module placed next in the processing chain
highly depends on the reliability of the data fusion hence,
noise voxels should be removed not to be detected as mo-
tion. A connectivity filter is introduced in order to remove
these voxels by checking its connectivity consistency with
its neighbours in both space and time. An example of the
output of the whole 3D processing module is depicted in
Fig.2(b)

B. Temporal Analysis Module

In order to achieve a simple and efficient low level
view-dependent motion representation, [4] introduced the
concept of Motion History Image (MHV) and Motion En-
ergy Image (MEI). In this paper, we extended the same
formulation to represent view-independent 3D maotion.
Analogously to [4], [5], the binary Motion Energy \Vol-
ume (MEV) E, (x,t) is defiqed as:

Er(x,t)=|J QP (x,t—1i), )
=0

where QP (x,t) is the birz1ary data set indicating regions
of motion. This measure captures the 3D locations where
there is motion in the last 7 frames. Motion detection cap-
tured in QP (x, ) can be coarsely estimated by a simple
forward differentiation among voxel frames. It should be
noted that 7 is a crucial parameter in defining the tempo-
ral extent of a gesture. In Fig.3(a), an example of MEV is
depicted.

To represent the temporal evolution of the motion, we
define the Motion History Volume (MHV) where each
voxel intensity is a function of the temporal history of the
motion at that 3D location. Formally,

T if QP (x,t) =1

otherwise
®)
This particular choice of temporal projection operator has
the advantage that computation is recursive thus being
a good representation for a real-time gesture recognition
system. An example of MHV is shown in Fig.3(b).
Estimating a right value of the time factor = (memory
of the system) is critical to extract meaningful features
to perform classification. Start and end of an action can
be estimated adaptively by analyzing the volume activity
of QP (x,t): when there is an action starting, motion in-
creases suddenly thus triggering the MHV computation

iy (x,1) = { max [0, H, (x,t — 1) — 1]

Fig. 3. Example of motion descriptors. In (a) and (b) are de-
picted the 2D projections of MEV and MHV respectively
for gestures sitting down and raising hand.
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Fig. 4. Estimation of time decay parameter = of hand waving
action by looking at the volume of the motion detection set
oP (x,1).

until a gesture ends and motion activity decreases below a
threshold Ay, (see Fig.4).

I1l. FEATURE EXTRACTION AND GESTURE
CLASSIFICATION

Motion described at a low level using just image pro-
cessing techniques requires a very high dimensional space
to represent it. Methods to represent motion in a low-
dimensional space are therefore desirable. Hence, infor-
mative features derived from the analyzed data (MHV and
MEV in our case) are required.

Statistical moments invariant to scaling, translation, ro-
tation and affine mappings were early introduced by [14]
for character recognition tasks. Their invariance prop-
erties yield to robust and informative features suitable
for classification tasks and have been used in other 2D
motion-based human gesture approaches [4], [5], [6]. The
proposed system extends the usage of invariant moments




to be computed over our data sets as classification fea-
tures. Nevertheless, since our system is based on a data
fusion prior to the classification process, 3D invariant sta-
tistical moments are required. These type of features have
been already used in brain tissue classification tasks [15]
and can be derived analytically. The reader is referred to
Lo and Don’s method [7] for a detailed description of the
construction of invariant statistical moments of arbitrary
dimension. For each data set F, (x,t) and H, (x,t), 5
invariant moment-based features are computed. Let us de-
note the set of these features as .

Given the computed moment-based features obtained
for each of the actions to classify w;, 0 < j <
K, we define a full 10-dimensional feature vector as
I = [¢mev ¥wmnv]. Even though the dimensionality of T
is very reduced, empty-space related problems arise when
estimating class distributions [16]. Such effects decrease
the efficiency of classification but this problem can be
tackled by finding a transformed representation of data in
a compact reduced dimensional space through Principal
Component Analysis (PCA) [16]. By analyzing the train-
ing data we noticed that 90% of the variance of the data
was achieved by using a dimension reductionto d = 7.

The classification method is based on a Bayesian clas-
sification criterium assuming that p(I'|w;) is normally dis-
tributed. Since the noise in our data is the result of the
sum of contribution from a large number of independent
sources, Central Limit Theorem grants consistency to the
Gaussianity assumption of our data. Indeed, further em-
piric tests [16] corroborate this assumption. Given an ob-
servation represented by T, its classification is expressed
by the maximum likelihood principle:

arg Irguaxp(wj|F), 4)
where the posterior probal:;ility of a certain class w; given
an observation I is formally

p(w;|T) = p (F|(;J()F§7 (w;) . )

Since p(w;) and p(I") factors are wide and uninforma-

tive, Eq.5 can be expressed as

p (w;|I") o p (Plw;), (6)
where p (I'|w;) is modeled as a multivariate Gaussian dis-
tribution defined by its mean x and covariance matrix 3.
Training data is used to estimate (u, 3); for each class
in order to compute the class-likelihood discriminant in
Eq.4.

V. RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed
algorithm, we collected a set of 70 training and 30 test-
ing multi-view sequences of each action to be recognized.
The analysis sequences were recorded with 5 fully cal-
ibrated wide angle lense cameras in the SmartRoom at
UPC with a resolution of 768x576 pixels at 25 fps (see a

sample in Fig.2(a)). The gesture category set was formed
by 8 common actions of interest in the field of human-
computer interfaces such as raising hand, sitting down,
waving hands, crouching down, standing up, punching,
kicking or jumping. Moreover, to show the effective-
ness of the moment invariant based features, actions were
recorded in different positions inside the room and facing
various orientations.

Quantitative results showed in Table | prove the ef-
ficiency of the proposed algorithm to recognize human
gestures from the given dataset. In average, we got a
p(error) = 0.0375. However, our method is conditioned
by the initial foreground segmentation step thus being sen-
sitive to the colours of the clothes of the people in the
scene.

TABLE |
CONFUSION MATRIX INDICATING THEp(ERROR) OF THE
BAYESIAN CLASSIFIER AMONG GESTURE CLASSES.

Wo | W1 | W2 | W3 | wq | W5 | We | wr
wp| - | 00] 00 |00|00]|O00]00]| 00
wi | 00| - 00 [ 00)|00]00]|00|0.08
we | 0.0 ] 00 - 00|00(00|00| 00
w3z | 0.0 00| 00 - 100]00(00]| 00
wg 10070100 00| - |00]00]| 00
ws |00]00| 00 |00|00O| - |00 00
weg | 0.0 00]006|00|00]|00]| - 0.0
w7 | 00]00] 00 |0.0|00]|00]00 -

Multiple view motion-based recognition of gesture is
commonly addressed by the complementary information
processing paradigm relying on feature fusion and clas-
sification. For comparison purposes, we took the results
provided in [4] where the alternative approach to multi-
ocular recognition of gestures is analyzed. Similar error
ratios are achieved but always relying on the assumption
that only one individual is present in the scene and there
are no occlusions.

V. CONCLUSIONS AND FUTURE WORK

We presented an efficient technique for motion-based
view-independent gesture recognition in a multiple cam-
era view environment. This paper explores the informa-
tion processing methodology based on first performing a
fusion of the incoming data and then extracting 3D motion
description features to perform classification.

Information provided by multiple views originated
from the same real 3D world is better captured when being
analyzed by a data-level fusion instead of a feature-level
fusion. Experimental results proved the efficiency of our
method proposing an alternative to the classical method-
ology to multi-ocular and mono-ocular motion-based ges-



ture analysis [4], [6], [5].

Future research within this topic involve developing
more data fusion strategies involving color to generate
informative descriptions of motion. More sophisticated
classification techniques and 3D color related features are
under research. Combination of motion detection together
with a prior estimation of the body position of the person
might allow a higher semantic analysis of the actions.
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